954 resultados para Damping oscillation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent progress of submerged floating tunnel (SFT) investigation and SFT prototype (SFTP) project in Qiandao Lake (Zhejiang Province, P.R. China) is the background of this research. Structural damping effect is brought into present computation model in terms of Rayleigh damping. Based on the FEM computational results of SFTPs as a function of buoyancy-weight ratio (BWR) under hydrodynamic loads, the effect of BWR on the dynamic response of SFT is illustrated. In addition, human comfort index is adopted to discuss the comfort status of the SFTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of betatron oscillations driven by the laser field. As trapped electrons accelerate, they move forward and interact with the laser pulse. For the bubble regime, a simple model is presented to describe this interaction in terms of a harmonic oscillator with a driving force from the laser and a restoring force from the plasma wake field. The resulting beam oscillations in the polarization plane, with period approximately the wavelength of the driving laser, increase emittance in that plane and cause microbunching of the beam. These effects are observed directly in 3D particle-in-cell simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rabi oscillation of the thin bulk semiconductor GaAs, which takes into account the effect of the local-field correction induced by the interacting excitons, is investigated by numerically solving the semiconductor Bloch equations. It is found, for a 2 pi few-cycle pulse excitation, that two incomplete Rabi-floppings emerge due to the competition between the Rabi frequency of the incident pulse and the internal-field matrices. Furthermore, for a sub-cycle 2 pi pulse excitation a complete Rabi-flopping can occur because of the absolute phase effect. We ascribe these characteristics of the Rabi oscillation to the renormalized Rabi frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In laser-target interaction, the effects of laser intensity on plasma oscillation at the front surface of targets have been investigated by one-dimensional particle in cell simulations. The periodical oscillations of the ion density and electrostatic field at the front surface of the targets are reported for the first time, which is considered as an intrinsic property of the target excited by the laser. The oscillation period depends only on initial plasma density and is irrelevant with laser intensity. Flattop structures with curves in ion phase space are found with a more intense laser pulse due to the larger amplitude variation of the electrostatic field. A simple but valid model is proposed to interpret the curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.

We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A description is given of experimental work on the damping of a second order electron plasma wave echo due to velocity space diffusion in a low temperature magnetoplasma. Sufficient precision was obtained to verify the theoretically predicted cubic rather than quadratic or quartic dependence of the damping on exciter separation. Compared to the damping predicted for Coulomb collisions in a thermal plasma in an infinite magnetic field, the magnitude of the damping was approximately as predicted, while the velocity dependence of the damping was weaker than predicted. The discrepancy is consistent with the actual non-Maxwellian electron distribution of the plasma.

In conjunction with the damping work, echo amplitude saturation was measured as a function of the velocity of the electrons contributing to the echo. Good agreement was obtained with the predicted J1 Bessel function amplitude dependence, as well as a demonstration that saturation did not influence the damping results.