424 resultados para DSP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of separating a speech signal into its excitation and vocal-tract filter components, which falls within the framework of blind deconvolution. Typically, the excitation in case of voiced speech is assumed to be sparse and the vocal-tract filter stable. We develop an alternating l(p) - l(2) projections algorithm (ALPA) to perform deconvolution taking into account these constraints. The algorithm is iterative, and alternates between two solution spaces. The initialization is based on the standard linear prediction decomposition of a speech signal into an autoregressive filter and prediction residue. In every iteration, a sparse excitation is estimated by optimizing an l(p)-norm-based cost and the vocal-tract filter is derived as a solution to a standard least-squares minimization problem. We validate the algorithm on voiced segments of natural speech signals and show applications to epoch estimation. We also present comparisons with state-of-the-art techniques and show that ALPA gives a sparser impulse-like excitation, where the impulses directly denote the epochs or instants of significant excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sliding mode position control for high-performance real-time applications of induction motors in developed in this work. The design also incorporates a simple flux estimator in order to avoid the flux sensors. Then, the proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost DSP-processor. The stability analysis of the controller under parameter uncertainties and load disturbances in provided using Lyapunov stability theory. Finally, simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relentlessly increasing demand for network bandwidth, driven primarily by Internet-based services such as mobile computing, cloud storage and video-on-demand, calls for more efficient utilization of the available communication spectrum, as that afforded by the resurging DSP-powered coherent optical communications. Encoding information in the phase of the optical carrier, using multilevel phase modulationformats, and employing coherent detection at the receiver allows for enhanced spectral efficiency and thus enables increased network capacity. The distributed feedback semiconductor laser (DFB) has served as the near exclusive light source powering the fiber optic, long-haul network for over 30 years. The transition to coherent communication systems is pushing the DFB laser to the limits of its abilities. This is due to its limited temporal coherence that directly translates into the number of different phases that can be imparted to a single optical pulse and thus to the data capacity. Temporal coherence, most commonly quantified in the spectral linewidth Δν, is limited by phase noise, result of quantum-mandated spontaneous emission of photons due to random recombination of carriers in the active region of the laser.

In this work we develop a generically new type of semiconductor laser with the requisite coherence properties. We demonstrate electrically driven lasers characterized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow linewidth is result of a fundamentally new laser design philosophy that separates the functions of photon generation and storage and is enabled by a hybrid Si/III-V integration platform. Photons generated in the active region of the III-V material are readily stored away in the low loss Si that hosts the bulk of the laser field, thereby enabling high-Q photon storage. The storage of a large number of coherent quanta acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous emission-mandated phase perturbations on the laser field, while the enhanced photon lifetime effectively reduces the emission rate of incoherent quanta into the lasing mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the entire optical communication C-band (1530-1575nm) at only a fraction of the input power required by conventional DFB lasers. The results presented in this thesis hold great promise for the large scale integration of lithographically tuned, high-coherence laser arrays for use in coherent communications, that will enable Tb/s-scale data capacities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gordon E. Moore, co-fundador de Intel, predijo en una publicación del año 1965 que aproximadamente cada dos años se duplicaría el número de transistores presentes en un circuito integrado, debido a las cada vez mejores tecnologías presentes en el proceso de elaboración. A esta ley se la conoce como Ley de Moore y su cumplimiento se ha podido constatar hasta hoy en día. Gracias a ello, con el paso del tiempo cada vez se presentan en el mercado circuitos integrados más potentes, con mayores prestaciones para realizar tareas cada vez más complejas. Un tipo de circuitos integrados que han podido evolucionar de forma importante por dicho motivo, son los dispositivos de lógica programable, circuitos integrados que permiten implementar sobre ellos las funciones lógicas que desee implementar el usuario. Hasta hace no muchos años, dichos dispositivos eran capaces de implementar circuitos compuestos por unas pocas funciones lógicas, pero gracias al proceso de miniaturización predicho por la Ley de Moore, hoy en día son capaces de implementar circuitos tan complejos como puede ser un microprocesador; dichos dispositivos reciben el nombre de FPGA, siglas de Field Programmable Gate Array. Debido a la mayor capacidad y por lo tanto a diseños más complejos implementados sobre las FPGA, en los últimos años han aparecido herramientas cuyo objetivo es hacer más fácil el proceso de ingeniería dentro de un desarrollo en este tipo de dispositivos, como es la herramienta HDL Coder de la compañía MathWorks, creadores también Matlab y Simulink, unas potentes herramientas usadas ampliamente en diferentes ramas de la ingeniería. El presente proyecto tiene como objetivo evaluar el uso de dicha herramienta para el procesado digital de señales, usando para ello una FPGA Cyclone II de la casa Altera. Para ello, se empezará analizando la herramienta escogida comparándola con herramientas de la misma índole, para a continuación seleccionar una aplicación de procesado digital de señal a implementar. Tras diseñar e implementar la aplicación escogida, se deberá simular en PC para finalmente integrarla en la placa de evaluación seleccionada y comprobar su correcto funcionamiento. Tras analizar los resultados de la aplicación de implementada, concretamente un analizador de la frecuencia fundamental de una señal de audio, se ha comprobado que la herramienta HDL Coder, es adecuada para este tipo de desarrollos, facilitando enormemente los procesos tanto de implementación como de validación gracias al mayor nivel de abstracción que aporta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El objetivo principal de este proyecto consiste en desarrollar una librería en Matlab- Simulink correspondiente a un OBD (Sistema de diagnóstico a bordo) para el vehículo eléctrico. Se pretende comprobar el correcto funcionamiento de la librería ejecutando el software en tiempo real mediante un PLC proporcionado por Tecnalia, realizando la comunicación entre PLC y PC mediante bus CAN. En este contexto, la ejecución del proyecto seguiría la metodología de software del ciclo en V con las siguientes fases principales: Desarrollo de las comunicaciones en Simulink (Plataforma PC).Implementación del software en plataformas de prototipado rápido (Dspace). Validación y testeo. Implementación final en DSP.