937 resultados para Crystal-Growth Process


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Variations in crystal morphologies in pillow basalts and probable sheet flows sampled from the region of the East Pacific Rise drilled during Leg 54 are related both to differences in composition and to an extreme range of cooling rate experienced upon extrusion. The basalts range in composition from olivine-rich tholeiites to tholeiitic ferrobasalts, and include some more alkaline basalts. The kinetics of crystal growth in some samples appears to have been influenced by the amount of initial superheating (or supercooling) of the magma, or possibly by differential retention of volatiles. Olivine in quartznormative ferrobasalts apparently formed metastably at high undercooling. Despite these effects, reliable petrographic criteria are established to distinguish the principal rock types described regardless of the crystallinity and grain size. Microphenocrysts formed prior to pillow formation correspond closely to mineral assemblages inferred from normative plots and variation diagrams to control crystal fractionation at various stages. The details of spherulitic and dendritic growth also provide some clues about composition. Petrographic evidence for magma mixing is scant. Only some Siqueiros fracture zone basalts contain zoned plagioclase phenocrysts with glass inclusions similar to those used to infer mixing among Mid-Atlantic Ridge basalts. All basalts from the summit and flanks of the East Pacific Rise are aphyric. One possible petrographic consequence of mixing between olivine tholeiites and ferrobasalts - formation of clinopyroxene phenocrysts - is not evident in any fracture zone or Rise crest basalt. Highly evolved ferrobasalts with liquidus low-Ca clinopyroxene have not been sampled, nor does textural evidence indicate that any basalts sampled are hybrid compositions between such magmas and less fractionated compositions. Evidently the sampled ferrobasalts are close to the most evolved compositions that occur in any abundance on this portion of the East Pacific Rise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper explores the causal links between the role of public finance and Bihar's growth and development in the last decade; and argues that these links are tenuous. Bihar's growth acceleration precedes the ‘policy reforms' in public finance based on the ‘good governance' agenda initiated since 2005-06. However, the constraints on sustaining efforts to close Bihar's development gap with the rest of India stems from the nature of the growth process in its regional, sectoral and social dimensions and the contradictory means and ends of the ‘policy reforms' in public finance. Together, this has not only prevented the economic growth to add to public coiffeurs of the state but also occluded the role of tax institutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence of the substrate temperature, III/V flux ratio, and mask geometry on the selective area growth of GaN nanocolumns is investigated. For a given set of growth conditions, the mask design (diameter and pitch of the nanoholes) is found to be crucial to achieve selective growth within the nanoholes. The local III/V flux ratio within these nanoholes is a key factor that can be tuned, either by modifying the growth conditions or the mask geometry. On the other hand, some specific growth conditions may lead to selective growth but not be suitable for subsequent vertical growth. With optimized conditions, ordered GaN nanocolumns can be grown with a wide variety of diameters. In this work, ordered GaN nanocolumns with diameter as small as 50 nm are shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work aims at a deeper understanding of the energy loss phenomenon in polysilicon production reactors by the so-called Siemens process. Contributions to the energy consumption of the polysilicon deposition step are studied in this paper, focusing on the radiation heat loss phenomenon. A theoretical model for radiation heat loss calculations is experimentally validated with the help of a laboratory CVD prototype. Following the results of the model, relevant parameters that directly affect the amount of radiation heat losses are put forward. Numerical results of the model applied to a state-of-the-art industrial reactor show the influence of these parameters on energy consumption due to radiation per kilogram of silicon produced; the radiation heat loss can be reduced by 3.8% when the reactor inner wall radius is reduced from 0.78 to 0.70 m, by 25% when the wall emissivity is reduced from 0.5 to 0.3, and by 12% when the final rod diameter is increased from 12 to 15 cm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work addresses heat losses in a CVD reactor for polysilicon production. Contributions to the energy consumption of the so-called Siemens process are evaluated, and a comprehensive model for heat loss is presented. A previously-developed model for radiative heat loss is combined with conductive heat loss theory and a new model for convective heat loss. Theoretical calculations are developed and theoretical energy consumption of the polysilicon deposition process is obtained. The model is validated by comparison with experimental results obtained using a laboratory-scale CVD reactor. Finally, the model is used to calculate heat consumption in a 36-rod industrial reactor; the energy consumption due to convective heat loss per kilogram of polysilicon produced is calculated to be 22-30 kWh/kg along a deposition process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TiO2 nanoparticles with tailored morphology have been synthesized under exceptionally soft conditions. The strategy is based on the use of a non-aqueous alcoholic reaction medium in which water traces, coming either from the air (atmospheric water) or from an ethanol–water azeotropic mixture (ethanol 96%), are incorporated in order to accelerate hydrolysis of the Ti–precursor. Moreover, organic surfactants have been used as capping agents so as to tailor crystal growth in certain preferential directions. Combinations of oleic acid and oleylamine, which lead to the formation of another surfactant, dioleamide, are employed instead of fluorine-based compounds, thus increasing the sustainability of the process. As a result, TiO2 nanostructured hierarchical microspheres and individual nanoparticles with exposed high-energy facets can be obtained at atmospheric pressure and temperatures as low as 78 °C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

n this paper the influence of an axial microgravity on the dynamic stability of axisymmetric slender liquid bridges between unequal disks is numerically studied by using a one-dimensional theory. The breaking of such liquid configurations is analyzed and the dependence of some overall characteristics of the breaking process on the value of axial microgravity, the geometry and the volume of the liquid bridge, as well as stability limits are obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polysilicon production costs contribute approximately to 25-33% of the overall cost of the solar panels and a similar fraction of the total energy invested in their fabrication. Understanding the energy losses and the behaviour of process temperature is an essential requirement as one moves forward to design and build large scale polysilicon manufacturing plants. In this paper we present thermal models for two processes for poly production, viz., the Siemens process using trichlorosilane (TCS) as precursor and the fluid bed process using silane (monosilane, MS).We validate the models with some experimental measurements on prototype laboratory reactors relating the temperature profiles to product quality. A model sensitivity analysis is also performed, and the efects of some key parameters such as reactor wall emissivity, gas distributor temperature, etc., on temperature distribution and product quality are examined. The information presented in this paper is useful for further understanding of the strengths and weaknesses of both deposition technologies, and will help in optimal temperature profiling of these systems aiming at lowering production costs without compromising the solar cell quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new ultrafiltration membrane was developed by the incorporation of binary metal oxides inside polyethersulfone. Physico-chemical characterization of the binary metal oxides demonstrated that the presence of Ti in the TiO2?ZrO2 system results in an increase of the size of the oxides, and also their dispersity. The crystalline phases of the synthesized binary metal oxides were identified as srilankite and zirconium titanium oxide. The effect of the addition of ZrO2 can be expressed in terms of the inhibition of crystal growth of anocrystalline TiO2 during the synthesis process. For photocatalytic applications the band gap of the synthesized semiconductors was determined, confirming a gradual increase (blue shift) in the band gap as the amount of Zr loading increases. Distinct distributions of binary metal oxides were found along the permeation axis for the synthesized membranes. Particles with Ti are more uniformly dispersed throughout the membrane cross-section. The physico-chemical characterization of membranes showed a strong correlation between some key membrane properties and the spatial particle distribution in the membrane structure. The proximity of metal oxide fillers to the membrane surface determines the hydrophilicity and porosity of modified membranes. Membranes incorporating binary metal oxides were found to be promising candidates for wastewater treatment by ultrafiltration, considering the observed improvement influx and anti-fouling properties of doped membranes. Multi-run fouling tests of doped membranes confirmed the stability of permeation through membranes embedded with binary TiO2?ZrO2 particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

No presente trabalho foram avaliados processos alternativos de dessalinização visando a recuperação e reuso da água contida em salmouras concentradas, sendo o processo de cristalização assistida por destilação por membranas (MDC) investigado com profundidade. Foi desenvolvido um modelo diferencial para o processo de destilação por membranas por contato direto (DCMD), contemplando métodos termodinâmicos rigorosos para sistemas aquosos de eletrólitos fortes, bem como mecanismos de transferência de calor e massa e efeitos de polarização de temperatura e concentração característicos deste processo de separação. Com base em simulações realizadas a partir do modelo matemático assim desenvolvido, foram investigados os principais parâmetros que influenciam o projeto de um módulo de membranas para DCMD. O modelo foi posteriormente estendido com equações de balanço de massa e energia adicionais para incluir a operação de cristalização e desta forma representar o processo de MDC. De posse dos resultados das simulações e do modelo estendido, foi desenvolvido um método hierárquico para o projeto de processos de MDC, com o objetivo de conferir características de rastreabilidade e repetibilidade a esta atividade. Ainda a partir do modelo MDC foram discutidos aspectos importantes em MDC como a possibilidade de nucleação e crescimento de cristais sobre a superfície das membranas, bem como o comportamento do processo com sais com diferentes características de solubilidade e largura da zona metaestável. Verificou-se que para sais cuja solubilidade varia muito pouco com a temperatura e que possuem zona metaestável com pequena largura, caso do NaCl, a operação com resfriamento no cristalizador não é viável pois aumenta excessivamente o consumo energético do processo, sendo nesses casos preferível a operação \"isotérmica\" - sem resfriamento no cristalizador - e o convívio com a possibilidade de nucleação no interior do módulo. No extremo oposto, observou-se que para sais com grande variabilidade da solubilidade com a temperatura, um pequeno resfriamento no cristalizador é suficiente para garantir condições de subsaturação no interior do módulo, sem grande ônus energético para o processo. No caso de sais com pequena variabilidade da solubilidade com a temperatura, mas com largura da zona metaestável elevada, existe certo ônus energético para a operação com resfriamento do cristalizador, porém não tão acentuado como no caso de sais com zona metaestável estreita. Foi proposto um fluxograma alternativo para o processo de MDC, onde foi introduzido um circuito de pré-concentração da alimentação antes do circuito de cristalização, para o caso de alimentação com soluções muito diluídas. Este esquema proporcionou um aumento do fluxo permeado global do processo e consequentemente uma redução na área total de membrana requerida. Verificou-se que através do processo com préconcentração da alimentação de 5% até 10% em massa - no caso de dessalinização de uma solução de NaCl - foi possível reduzir-se a área total da membrana em 27,1% e o consumo energético específico do processo em 10,6%, quando comparado ao processo sem pré-concentração. Foram desenvolvidas ferramentas úteis para o projeto de processos de dessalinização por MDC em escala industrial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The status of silicon sheet development for photovoltaic applications is critically reviewed. Silicon sheet growth processes are classified according to their linear growth rates. The "fast" growth processes, which include edge-defined film-fed growth, silicon on ceramic, dendritic-web growth, and ribbon-to-ribbon growth, are comparatively ranked subject to criteria involving growth stability, sheet productivity, impurity effects, crystallinity, and solar cell results. The status of more rapid silicon ribbon growth techniques, such as horizontal ribbon growth and melt quenching, is also reviewed. The emphasis of the discussions is on examining the viability of these sheet materials as solar cell substrates for low-cost silicon photovoltaic systems.