836 resultados para Controlled drug delivery systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spherical MCM-41 particles with a diameter of about 150 nm have been successfully coated with CaWO4:Ln (Ln = Eu3+, Dy3+, Sm3+, Er3+) phosphor layers through a simple Pechini sol-gel process. The obtained CaWO4:Ln@MCM-41 composites, which kept the mesoporous structure of MCM-41 and the luminescent properties of phosphors, were investigated as a drug delivery system using aspirin (ASPL) as a model drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the chemical synthesis and in vitro drug delivery response of polyethylene glycol (PEG)-functionalized magnetite (Fe3O4) nanoparticles, which were activated with a stable ligand, folic acid, and conjugated with an anticancer drug, doxorubicin. The functionalization and conjugation steps in the chemical synthesis were confirmed using Fourier transform infrared spectroscopy. The drug-release behavior of PEG-functionalized and folic acid-doxorubicin-conjugated magnetic nanoparticles was characterized by two stages involving an initial rapid release, followed by a controlled release. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of full interpenetrating polymer network (full-IPN) films of poly(acrylic acid) (PAA)/poly (vinyl alcohol) (PVA) were prepared by radical solution polymerization and sequential IPN technology. Attenuated total reflectance-Fourier transform infrared spectroscopy, swelling properties, mechanical properties, morphology, and glass transition temperature of the films were investigated. FTIR spectra analysis showed that new interaction hydrogen bonds between PVA and PAA were formed. Swelling property of the films in distilled water and different pH buffer solution was studied. Swelling ratio increased with increasing PAA content of IPN films in all media, and swelling ratio decreased with increasing PVA crosslink degree. Tensile strength and elongation at break related not only to the constitution of IPNs but also to the swelling ratio of IPNs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic functionalization of the ordered mesoporous SBA-15 (SiO2) aggregate blocks and rice grain-like particles were realized by using a sol-gel method, resulting in the formation of FexOy@SBA-15 composite materials. The X-ray diffraction (XRD), N-2 adsorption/desorption, and transmission electron microscopy (TEM) results show that these composites conserved ordered mesoporous structure after the formation of FexOy nanoparticles in the pores and on the outer surface of SBA-15. It was confirmed by the XRD and X-ray photoelectron spectroscopy (XPS) analysis that the FexOy generated in these mesoporous silica hosts is mainly composed of gamma-Fe2O3. Magnetic measurements reveal that these composites possess superparamagnetic properties at 300 K. The saturation magnetization of these composites increased with the increasing loading amount of gamma-Fe2O3. These composites, which possess high surface area and high pore volume, show magnetic response sufficient for drug targeting in the presence of an external magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution, we report a facile, gram-scale, low-cost route to prepare monodisperse superparamagnetic single-crystal magnetite NPs with mesoporous structure (MSSMN) via a very simple solvothermal method. The formation mechanism of MSSMN is also discussed and we think that Ostwald ripening probably plays an important role in this synthesis process. It is also interestingly found that the size and morphology of mesoporous Fe3O4 NPs can be easily controlled by changing the amount of NaOH and 1,2-ethylenediamine (ETH). Most importantly, the MSSMN can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin (Dox), is used for drug loading, and the release behaviors of Dox in two different pH solutions are studied. The results indicate that the MSSMN has a high drug loading capacity and favorable release property for Dox; thus, it is very promising for the application in drug delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel intelligent hydrogels composed of biodegradable and pH-sensitive poly(L-glutamic acid) (PGA) and temperature sensitive poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNH) were synthesized and characterized for controlled release of hydrophilic drug. The influence of pH on the equilibrium swelling ratios of the hydrogels was investigated. A higher PNH content resulted in lower equilibrium swelling ratios. Although temperature had little influence on the swelling behaviors of the hydrogels, the changes of optical transmittance of hydrogels as a function of temperature were marked, which showed that the PNH part of hydrogel exhibited hydrophobic property at temperature above the lower critical solution temperature (LCST). The biodegradation rate of the stimuli-sensitive hydrogels in the presence of enzyme was directly proportional to the PGA content. Lysozyme was chosen as a model drug and loaded into the hydrogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) used as liver targeted carrier for drug delivery, was prepared via hemisuccinate as a bridged group. The structure of the product was confirmed by IR and NMR methods and the degree of substitution (DS) of glycyrrhetinic acid groups was estimated via elemental analysis. Nanoparticles were formed by ionic gelation methold. The drug-loading and release behavior of the nanoparticles were investigated using BSA as the model drug. The results indicated that the carrier with a highest DS of 5.19% could be got and the DS was controlled by changing reaction temperature or feed ratio. BSA could be entrapped into the nanoparticles with the drug-loading ratio of 26.3% and the encapsulation efficiency of 81.5%. A sustained release over an 11-day period was observed in pH 7.4 in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescence functionalization of the ordered mesoporous SBA-15 silica was realized by depositing a YVO4:Eu3+ phosphor layer on its surface via the Pechini sol-gel process, resulting in the formation of the YVO4:Eu3+@SBA-15 composite material. This material, which combines the mesoporous structure of SBA-15 and the strong red luminescence property of YVO4:Eu3+, can be used as a novel functional drug delivery system. The structure, morphology, porosity, and optical properties of the materials were well characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N-2 adsorption, and photoluminescence spectra. As expected, the pore volume, surface area, and pore size of SBA-15 decrease in sequence after deposition of the YVO4:Eu3+ layer and the adsorption of ibuprofen (IBU, drug). The IBU-loaded YVO4:Eu3+@SBA-15 system still shows the red emission of Eu3+ (617 nm, D-5(0)-F-7(2)) under UV irradiation and the controlled drug release property. Additionally, the emission intensity of Eu3+ increases with an increase in the cumulative released amount of IBU in the system, making the extent of drug release easily identifiable, trackable, and monitorable by the change of luminescence. The system has great potential in the drug delivery and disease therapy fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of surfactants and medical drugs on the diameter size and uniformity of electrospun poly(L-lactic acid) (PLLA) fibers were examined by adding various surfactants (cationic, anionic, and nonionic) and typical drugs into the PLLA solution. Significant diameter reduction and uniformity improvement were observed. It was shown that the drugs were capsulated inside of the fibers and the drug release in the presence of proteinase K followed nearly zero-order kinetics due to the degradation of the PLLA fibers. Such ultrafine fiber mats containing drugs may find clinical applications in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug delivery systems influence the various processes of release, absorption, distribution and elimination of drug. Conventional delivery methods administer drug through the mouth, the skin, transmucosal areas, inhalation or injection. However, one of the current challenges is the lack of effective and targeted oral drug administration. Development of sophisticated strategies, such as micro- and nanotechnology that can integrate the design and synthesis of drug delivery systems in a one-step, scalable process is fundamental in advancing the limitations of conventional processing techniques. Thus, the objective of this thesis is to evaluate novel microencapsulation technologies in the production of size-specific and target-specific drug-loaded particles. The first part of this thesis describes the utility of PDMS and silicon microfluidic flow focusing devices (MFFDs) to produce PLGA-based microparticles. The formation of uniform droplets was dependent on the surface of PDMS remaining hydrophilic. However, the durability of PDMS was limited to no more than 1 hour before wetting of the microchannel walls with dichloromethane and subsequent swelling occurred. Critically, silicon MFFDs revealed very good solvent compatibility and was sufficiently robust to withstand elevated fluid flow rates. Silicon MFFDs facilitated experiments to run over days with continuous use and re-use of the device with a narrower microparticle size distribution, relative to conventional production techniques. The second part of this thesis demonstrates an alternative microencapsulation technology, SmPill® minispheres, to target CsA delivery to the colon. Characterisation of CsA release in vitro and in vivo was performed. By modulating the ethylcellulose:pectin coating thickness, release of CsA in-vivo was more effectively controlled compared to current commercial CsA formulations and demonstrated a linear in-vitro in-vivo relationship. Coated minispheres were shown to limit CsA release in the upper small intestine and enhance localised CsA delivery to the colon.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topical photodynamic therapy is used for a variety of malignant and pre-malignant skin disorders, including Bowen's Disease and Superficial Basal Cell Carcinoma. A haem precursor, typically 5-aminolevulinic acid (ALA), acting as a prodrug, is absorbed and converted by the haem biosynthetic pathway to photoactive protoprophyrin IX (PpIX), which accumulates preferentially in rapidly dividing
cells. Cell destruction occurs when PpIx is activated by an intense light source of appropriate wavelength. Topical delivery of ALA avoids the prolonged photosensitivity reactions associated with systemic administration of photosensitisers but its clinical utility is influenced by the tissue penetration characteristics of the drug, its ease of application and the stability of the active agent in the applied dose. This review, therefore, focuses on drug delivery applications for topical, ALA-based PDT. Issues considered in detail include physical and chemical enhancement strategies for tissue penetration of ALA and subsequent intracellular accumulation of PpIX, together with formulation strategies and drug delivery design solutions appropriate to various clinical applications. The fundamental aspects of drug diffusion in
relation to the physicochemical properties of ALA are reviewed and specific consideration is given to the degradation pathways of ALA in formulated systems that, in turn, influence the design of stable topical formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Importance of the field: Conventional dosing methods are frequently unable to deliver the clinical requirement of the patient. The ability to control the delivery of drugs from implanted materials is difficult to achieve, but offers promise in diverse areas such as infection-resistant medical devices and 10 responsive implants for diabetics. Areas covered in this review: This review gives a broad overview of recent progress in the use of triggers that can be used to achieve modulation of drug release rates from implantable biomaterials. In particular, these can be classified as being responsive to one or more of the following stimuli: a 15 chemical species, light, heat, magnetism, ultrasound and mechanical force. What the reader will gain: An overview of the potential for triggered drug delivery to give methods for tailoring the dose, location and time of release of a wide range of drugs where traditional dosing methods are not suitable. Particular emphasis is given to recently reported systems, and important 20 historical reports are included. Take home message: The use of externally or internally applied triggers of drug delivery to biomaterials has significant potential for improved delivery modalities and infection resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research into the targeting of drug substances to a specific disease site has enjoyed sustained activity for many decades. The reason for such fervent activity is the considerable clinical advantages that can be gained when the delivery system plays a pivotal role in determining where the drug is deposited. When compared to conventional formulations where no such control exists, such as parenteral and oral systems, the sophisticated targeting device can reduce side effects and limit collateral damage to surrounding normal tissue. No more so is this important than in the area of oncology when dose-limiting side effects are often encountered as an ever present difficulty. In this review, the types of colloidal carrier commonly used in targeted drug delivery are discussed, such as gold and polymeric colloids. In particular, the process of attaching targeting capabilities is considered, with reference to antibody technologies used as the targeting motifs. Nanotechnology has brought together a means to carry both a drug and targeting ligand in self-contained constructs and their applications to both clinical therapy and diagnosis are discussed.