983 resultados para Communication protocol stack


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dealing with computer networks, these allow the flow of information through the resources of various equipment's. This work describes the implementation through the encapsulation of Protocol DNP3, usually employed in Smart Grid communication, in a simulator of discrete events. The NS-2 is a simulator in open source of network events, that facilitate the development of communication networks scenarios considering the protocols involved, in wireless or wired technologies. The objective of this work is to develop the DNP3 protocol encapsulation over a TCP/IP in the in the discrete event Simulator NS-2, allowing an analysis of behavior of a middle or large network sized in Smart Grid applications. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require realtime video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The security of the two party Diffie-Hellman key exchange protocol is currently based on the discrete logarithm problem (DLP). However, it can also be built upon the elliptic curve discrete logarithm problem (ECDLP). Most proposed secure group communication schemes employ the DLP-based Diffie-Hellman protocol. This paper proposes the ECDLP-based Diffie-Hellman protocols for secure group communication and evaluates their performance on wireless ad hoc networks. The proposed schemes are compared at the same security level with DLP-based group protocols under different channel conditions. Our experiments and analysis show that the Tree-based Group Elliptic Curve Diffie-Hellman (TGECDH) protocol is the best in overall performance for secure group communication among the four schemes discussed in the paper. Low communication overhead, relatively low computation load and short packets are the main reasons for the good performance of the TGECDH protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses some aspects related to Wireless Sensor Networks over the IEEE 802.15.4 standard, and proposes, for the very first time, a mesh network topology with geographic routing integrated to the open Freescale protocol (SMAC - Simple Medium Access Control). For this is proposed the SMAC routing protocol. Before this work the SMAC protocol was suitable to perform one hop communications only. However, with the developed mechanisms, it is possible to use multi-hop communication. Performance results from the implemented protocol are presented and analyzed in order to define important requirements for wireless sensor networks, such as robustness, self-healing property and low latency. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scale down of transistor technology allows microelectronics manufacturers such as Intel and IBM to build always more sophisticated systems on a single microchip. The classical interconnection solutions based on shared buses or direct connections between the modules of the chip are becoming obsolete as they struggle to sustain the increasing tight bandwidth and latency constraints that these systems demand. The most promising solution for the future chip interconnects are the Networks on Chip (NoC). NoCs are network composed by routers and channels used to inter- connect the different components installed on the single microchip. Examples of advanced processors based on NoC interconnects are the IBM Cell processor, composed by eight CPUs that is installed on the Sony Playstation III and the Intel Teraflops pro ject composed by 80 independent (simple) microprocessors. On chip integration is becoming popular not only in the Chip Multi Processor (CMP) research area but also in the wider and more heterogeneous world of Systems on Chip (SoC). SoC comprehend all the electronic devices that surround us such as cell-phones, smart-phones, house embedded systems, automotive systems, set-top boxes etc... SoC manufacturers such as ST Microelectronics , Samsung, Philips and also Universities such as Bologna University, M.I.T., Berkeley and more are all proposing proprietary frameworks based on NoC interconnects. These frameworks help engineers in the switch of design methodology and speed up the development of new NoC-based systems on chip. In this Thesis we propose an introduction of CMP and SoC interconnection networks. Then focusing on SoC systems we propose: • a detailed analysis based on simulation of the Spidergon NoC, a ST Microelectronics solution for SoC interconnects. The Spidergon NoC differs from many classical solutions inherited from the parallel computing world. Here we propose a detailed analysis of this NoC topology and routing algorithms. Furthermore we propose aEqualized a new routing algorithm designed to optimize the use of the resources of the network while also increasing its performance; • a methodology flow based on modified publicly available tools that combined can be used to design, model and analyze any kind of System on Chip; • a detailed analysis of a ST Microelectronics-proprietary transport-level protocol that the author of this Thesis helped developing; • a simulation-based comprehensive comparison of different network interface designs proposed by the author and the researchers at AST lab, in order to integrate shared-memory and message-passing based components on a single System on Chip; • a powerful and flexible solution to address the time closure exception issue in the design of synchronous Networks on Chip. Our solution is based on relay stations repeaters and allows to reduce the power and area demands of NoC interconnects while also reducing its buffer needs; • a solution to simplify the design of the NoC by also increasing their performance and reducing their power and area consumption. We propose to replace complex and slow virtual channel-based routers with multiple and flexible small Multi Plane ones. This solution allows us to reduce the area and power dissipation of any NoC while also increasing its performance especially when the resources are reduced. This Thesis has been written in collaboration with the Advanced System Technology laboratory in Grenoble France, and the Computer Science Department at Columbia University in the city of New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency is a major concern in the design of Wireless Sensor Networks (WSNs) and their communication protocols. As the radio transceiver typically accounts for a major portion of a WSN node’s power consumption, researchers have proposed Energy-Efficient Medium Access (E2-MAC) protocols that switch the radio transceiver off for a major part of the time. Such protocols typically trade off energy-efficiency versus classical quality of service parameters (throughput, latency, reliability). Today’s E2-MAC protocols are able to deliver little amounts of data with a low energy footprint, but introduce severe restrictions with respect to throughput and latency. Regrettably, they yet fail to adapt to varying traffic load at run-time. This paper presents MaxMAC, an E2-MAC protocol that targets at achieving maximal adaptivity with respect to throughput and latency. By adaptively tuning essential parameters at run-time, the protocol reaches the throughput and latency of energy-unconstrained CSMA in high-traffic phases, while still exhibiting a high energy-efficiency in periods of sparse traffic. The paper compares the protocol against a selection of today’s E2-MAC protocols and evaluates its advantages and drawbacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using multicast communication in Wireless Sensor Networks (WSNs) is an efficient way to disseminate the same data (from one sender) to multiple receivers, e.g., transmitting code updates to a group of sensor nodes. Due to the nature of code update traffic a multicast protocol has to support bulky traffic and end-to-end reliability. We are interested in an energy-efficient multicast protocol due to the limited resources of wireless sensor nodes. Current data dissemination schemes do not fulfill the above requirements. In order to close the gap, we designed and implemented the SNOMC (Sensor Node Overlay Multicast) protocol. It is an overlay multicast protocol, which supports reliable, time-efficient, and energy-efficient data dissemination of bulky data from one sender to many receivers. To ensure end-to-end reliability, SNOMC uses a NACK-based reliability mechanism with different caching strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fields of Rhetoric and Communication usually assume a competent speaker who is able to speak well with conscious intent; however, what happens when intent and comprehension are intact but communicative facilities are impaired (e.g., by stroke or traumatic brain injury)? What might a focus on communicative success be able to tell us in those instances? This project considers this question in examining communication disorders through identifying and analyzing patterns of (dis) fluent speech between 10 aphasic and 10 non-aphasic adults. The analysis in this report is centered on a collection of data provided by the Aphasia Bank database. The database’s collection protocol guides aphasic and non-aphasic participants through a series of language assessments, and for my re-analysis of the database’s transcripts I consider communicative success is and how it is demonstrated during a re-telling of the Cinderella narrative. I conducted a thorough examination of a set of participant transcripts to understand the contexts in which speech errors occur, and how (dis) fluencies may follow from aphasic and non-aphasic participant’s speech patterns. An inductive mixed-methods approach, informed by grounded theory, qualitative, and linguistic analyses of the transcripts functioned as a means to balance the classification of data, providing a foundation for all sampling decisions. A close examination of the transcripts and the codes of the Aphasia Bank database suggest that while the coding is abundant and detailed, that further levels of coding and analysis may be needed to reveal underlying similarities and differences in aphasic vs. non-aphasic linguistic behavior. Through four successive levels of increasingly detailed analysis, I found that patterns of repair by aphasics and non-aphasics differed primarily in degree rather than kind. This finding may have therapeutic impact, in reassuring aphasics that they are on the right track to achieving communicative fluency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anonymity systems maintain the anonymity of communicating nodes by camouflaging them, either with peer nodes generating dummy traffic or with peer nodes participating in the actual communication process. The probability of any adversary breaking down the anonymity of the communicating nodes is inversely proportional to the number of peer nodes participating in the network. Hence to maintain the anonymity of the communicating nodes, a large number of peer nodes are needed. Lack of peer availability weakens the anonymity of any large scale anonymity system. This work proposes PayOne, an incentive based scheme for promoting peer availability. PayOne aims to increase the peer availability by encouraging nodes to participate in the anonymity system by awarding them with incentives and thereby promoting the anonymity strength. Existing incentive schemes are designed for single path based approaches. There is no incentive scheme for multipath based or epidemic based anonymity systems. This work has been specifically designed for epidemic protocols and has been implemented over MuON, one of the latest entries to the area of multicasting based anonymity systems. MuON is a peer-to-peer based anonymity system which uses epidemic protocol for data dissemination. Existing incentive schemes involve paying every intermediate node that is involved in the communication between the initiator and the receiver. These schemes are not appropriate for epidemic based anonymity systems due to the incurred overhead. PayOne differs from the existing schemes because it involves paying a single intermediate node that participates in the network. The intermediate node can be any random node that participates in the communication and does not necessarily need to lie in the communication path between the initiator and the receiver. The light-weight characteristics of PayOne make it viable for large-scale epidemic based anonymity systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A regioselective synthesis of unsymmetrical biaryls with electron withdrawing or donating substituents is described and illustrated by carbanion-induced ring transfonnation of 6-aryl-a-pyrones with methoxyacetone in excellent yield. Our methodology is an alternative to classical organometal-catalyzed aryl-aryl coupling reactions and can be applied to the synthesis of functionally demanding naphthyl biaryls for the development of new ligands for asymetric synthesis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information-centric networking (ICN) addresses drawbacks of the Internet protocol, namely scalability and security. ICN is a promising approach for wireless communication because it enables seamless mobile communication, where intermediate or source nodes may change, as well as quick recovery from collisions. In this work, we study wireless multi-hop communication in Content-Centric Networking (CCN), which is a popular ICN architecture. We propose to use two broadcast faces that can be used in alternating order along the path to support multi-hop communication between any nodes in the network. By slightly modifying CCN, we can reduce the number of duplicate Interests by 93.4 % and the number of collisions by 61.4 %. Furthermore, we describe and evaluate different strategies for prefix registration based on overhearing. Strategies that configure prefixes only on one of the two faces can result in at least 27.3 % faster data transmissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed real-time embedded systems are becoming increasingly important to society. More demands will be made on them and greater reliance will be placed on the delivery of their services. A relevant subset of them is high-integrity or hard real-time systems, where failure can cause loss of life, environmental harm, or significant financial loss. Additionally, the evolution of communication networks and paradigms as well as the necessity of demanding processing power and fault tolerance, motivated the interconnection between electronic devices; many of the communications have the possibility of transferring data at a high speed. The concept of distributed systems emerged as systems where different parts are executed on several nodes that interact with each other via a communication network. Java’s popularity, facilities and platform independence have made it an interesting language for the real-time and embedded community. This was the motivation for the development of RTSJ (Real-Time Specification for Java), which is a language extension intended to allow the development of real-time systems. The use of Java in the development of high-integrity systems requires strict development and testing techniques. However, RTJS includes a number of language features that are forbidden in such systems. In the context of the HIJA project, the HRTJ (Hard Real-Time Java) profile was developed to define a robust subset of the language that is amenable to static analysis for high-integrity system certification. Currently, a specification under the Java community process (JSR- 302) is being developed. Its purpose is to define those capabilities needed to create safety critical applications with Java technology called Safety Critical Java (SCJ). However, neither RTSJ nor its profiles provide facilities to develop distributed realtime applications. This is an important issue, as most of the current and future systems will be distributed. The Distributed RTSJ (DRTSJ) Expert Group was created under the Java community process (JSR-50) in order to define appropriate abstractions to overcome this problem. Currently there is no formal specification. The aim of this thesis is to develop a communication middleware that is suitable for the development of distributed hard real-time systems in Java, based on the integration between the RMI (Remote Method Invocation) model and the HRTJ profile. It has been designed and implemented keeping in mind the main requirements such as the predictability and reliability in the timing behavior and the resource usage. iThe design starts with the definition of a computational model which identifies among other things: the communication model, most appropriate underlying network protocols, the analysis model, and a subset of Java for hard real-time systems. In the design, the remote references are the basic means for building distributed applications which are associated with all non-functional parameters and resources needed to implement synchronous or asynchronous remote invocations with real-time attributes. The proposed middleware separates the resource allocation from the execution itself by defining two phases and a specific threading mechanism that guarantees a suitable timing behavior. It also includes mechanisms to monitor the functional and the timing behavior. It provides independence from network protocol defining a network interface and modules. The JRMP protocol was modified to include two phases, non-functional parameters, and message size optimizations. Although serialization is one of the fundamental operations to ensure proper data transmission, current implementations are not suitable for hard real-time systems and there are no alternatives. This thesis proposes a predictable serialization that introduces a new compiler to generate optimized code according to the computational model. The proposed solution has the advantage of allowing us to schedule the communications and to adjust the memory usage at compilation time. In order to validate the design and the implementation a demanding validation process was carried out with emphasis in the functional behavior, the memory usage, the processor usage (the end-to-end response time and the response time in each functional block) and the network usage (real consumption according to the calculated consumption). The results obtained in an industrial application developed by Thales Avionics (a Flight Management System) and in exhaustive tests show that the design and the prototype are reliable for industrial applications with strict timing requirements. Los sistemas empotrados y distribuidos de tiempo real son cada vez más importantes para la sociedad. Su demanda aumenta y cada vez más dependemos de los servicios que proporcionan. Los sistemas de alta integridad constituyen un subconjunto de gran importancia. Se caracterizan por que un fallo en su funcionamiento puede causar pérdida de vidas humanas, daños en el medio ambiente o cuantiosas pérdidas económicas. La necesidad de satisfacer requisitos temporales estrictos, hace más complejo su desarrollo. Mientras que los sistemas empotrados se sigan expandiendo en nuestra sociedad, es necesario garantizar un coste de desarrollo ajustado mediante el uso técnicas adecuadas en su diseño, mantenimiento y certificación. En concreto, se requiere una tecnología flexible e independiente del hardware. La evolución de las redes y paradigmas de comunicación, así como la necesidad de mayor potencia de cómputo y de tolerancia a fallos, ha motivado la interconexión de dispositivos electrónicos. Los mecanismos de comunicación permiten la transferencia de datos con alta velocidad de transmisión. En este contexto, el concepto de sistema distribuido ha emergido como sistemas donde sus componentes se ejecutan en varios nodos en paralelo y que interactúan entre ellos mediante redes de comunicaciones. Un concepto interesante son los sistemas de tiempo real neutrales respecto a la plataforma de ejecución. Se caracterizan por la falta de conocimiento de esta plataforma durante su diseño. Esta propiedad es relevante, por que conviene que se ejecuten en la mayor variedad de arquitecturas, tienen una vida media mayor de diez anos y el lugar ˜ donde se ejecutan puede variar. El lenguaje de programación Java es una buena base para el desarrollo de este tipo de sistemas. Por este motivo se ha creado RTSJ (Real-Time Specification for Java), que es una extensión del lenguaje para permitir el desarrollo de sistemas de tiempo real. Sin embargo, RTSJ no proporciona facilidades para el desarrollo de aplicaciones distribuidas de tiempo real. Es una limitación importante dado que la mayoría de los actuales y futuros sistemas serán distribuidos. El grupo DRTSJ (DistributedRTSJ) fue creado bajo el proceso de la comunidad de Java (JSR-50) con el fin de definir las abstracciones que aborden dicha limitación, pero en la actualidad aun no existe una especificacion formal. El objetivo de esta tesis es desarrollar un middleware de comunicaciones para el desarrollo de sistemas distribuidos de tiempo real en Java, basado en la integración entre el modelo de RMI (Remote Method Invocation) y el perfil HRTJ. Ha sido diseñado e implementado teniendo en cuenta los requisitos principales, como la predecibilidad y la confiabilidad del comportamiento temporal y el uso de recursos. El diseño parte de la definición de un modelo computacional el cual identifica entre otras cosas: el modelo de comunicaciones, los protocolos de red subyacentes más adecuados, el modelo de análisis, y un subconjunto de Java para sistemas de tiempo real crítico. En el diseño, las referencias remotas son el medio básico para construcción de aplicaciones distribuidas las cuales son asociadas a todos los parámetros no funcionales y los recursos necesarios para la ejecución de invocaciones remotas síncronas o asíncronas con atributos de tiempo real. El middleware propuesto separa la asignación de recursos de la propia ejecución definiendo dos fases y un mecanismo de hebras especifico que garantiza un comportamiento temporal adecuado. Además se ha incluido mecanismos para supervisar el comportamiento funcional y temporal. Se ha buscado independencia del protocolo de red definiendo una interfaz de red y módulos específicos. También se ha modificado el protocolo JRMP para incluir diferentes fases, parámetros no funcionales y optimizaciones de los tamaños de los mensajes. Aunque la serialización es una de las operaciones fundamentales para asegurar la adecuada transmisión de datos, las actuales implementaciones no son adecuadas para sistemas críticos y no hay alternativas. Este trabajo propone una serialización predecible que ha implicado el desarrollo de un nuevo compilador para la generación de código optimizado acorde al modelo computacional. La solución propuesta tiene la ventaja que en tiempo de compilación nos permite planificar las comunicaciones y ajustar el uso de memoria. Con el objetivo de validar el diseño e implementación se ha llevado a cabo un exigente proceso de validación con énfasis en: el comportamiento funcional, el uso de memoria, el uso del procesador (tiempo de respuesta de extremo a extremo y en cada uno de los bloques funcionales) y el uso de la red (consumo real conforme al estimado). Los buenos resultados obtenidos en una aplicación industrial desarrollada por Thales Avionics (un sistema de gestión de vuelo) y en las pruebas exhaustivas han demostrado que el diseño y el prototipo son fiables para aplicaciones industriales con estrictos requisitos temporales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum key distribution performs the trick of growing a secret key in two distant places connected by a quantum channel. The main reason is so that the legitimate users can bound the information gathered by the eavesdropper. In practical systems, whether because of finite resources or external conditions, the quantum channel is subject to fluctuations. A rate-adaptive information reconciliation protocol, which adapts to the changes in the communication channel, is then required to minimize the leakage of information in the classical postprocessing. We consider here the leakage of a rate-adaptive information reconciliation protocol. The length of the exchanged messages is larger than that of an optimal protocol; however, we prove that the min-entropy reduction is limited. The simulation results, both in the asymptotic and in the finite-length regime, show that this protocol allows to increase the amount of a distillable secret key.