959 resultados para Classification Automatic Modulation. Correntropy. Radio Cognitive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = -.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = -.17) or AEA (r = -.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prefrontal (PFC) and orbitofrontal cortex (OFC) appear to be associated with both executive functions and olfaction. However, there is little data relating olfactory processing and executive functions in humans. The present study aimed at exploring the role of olfaction on executive functioning, making a distinction between primary and more cognitive aspects of olfaction. Three executive tasks of similar difficulty were used. One was used to assess hot executive functions (Iowa Gambling Task-IGT), and two as a measure of cold executive functioning (Stroop Colour and Word Test-SCWT and Wisconsin Card Sorting Test-WCST). Sixty two healthy participants were included: 31 with normosmia and 31 with hyposmia. Olfactory abilities were assessed using the ''Sniffin' Sticks'' test and the olfactory threshold, odour discrimination and odour identification measures were obtained. All participants were female, aged between 18 and 60. Results showed that participants with hyposmia displayed worse performance in decision making (IGT; Cohen's-d = 0.91) and cognitive flexibility (WCST; Cohen's-d between 0.54 and 0.68) compared to those with normosmia. Multiple regression adjusted by the covariates participants' age and education level showed a positive association between odour identification and the cognitive inhibition response (SCWT-interference; Beta = 0.29; p = .034). The odour discrimination capacity was not a predictor of the cognitive executive performance. Our results suggest that both hot and cold executive functions seem to be associated with higher-order olfactory functioning in humans. These results robustly support the hypothesis that olfaction and executive measures have a common neural substrate in PFC and OFC, and suggest that olfaction might be a reliable cognitive marker in psychiatric and neurologic disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS: We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS: Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION: A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the period 1996-2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, whether inhibitory functions in humans can be trained and the supporting neurophysiological mechanisms remain unresolved. We addressed these issues by contrasting auditory evoked potentials (AEPs) to left-lateralized "Go" and right NoGo stimuli recorded at the beginning versus the end of 30 min of active auditory spatial Go/NoGo training, as well as during passive listening of the same stimuli before versus after the training session, generating two separate 2 × 2 within-subject designs. Training improved Go/NoGo proficiency. Response times to Go stimuli decreased. During active training, AEPs to NoGo, but not Go, stimuli modulated topographically with training 61-104 ms after stimulus onset, indicative of changes in the underlying brain network. Source estimations revealed that this modulation followed from decreased activity within left parietal cortices, which in turn predicted the extent of behavioral improvement. During passive listening, in contrast, effects were limited to topographic modulations of AEPs in response to Go stimuli over the 31-81 ms interval, mediated by decreased right anterior temporoparietal activity. We discuss our results in terms of the development of an automatic and bottom-up form of inhibitory control with training and a differential effect of Go/NoGo training during active executive control versus passive listening conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three most frequent forms of mild cognitive impairment (MCI) are single-domain amnestic MCI (sd-aMCI), single-domain dysexecutive MCI (sd-dMCI) and multiple-domain amnestic MCI (md-aMCI). Brain imaging differences among single domain subgroups of MCI were recently reported supporting the idea that electroencephalography (EEG) functional hallmarks can be used to differentiate these subgroups. We performed event-related potential (ERP) measures and independent component analysis in 18 sd-aMCI, 13 sd-dMCI and 35 md-aMCI cases during the successful performance of the Attentional Network Test. Sensitivity and specificity analyses of ERP for the discrimination of MCI subgroups were also made. In center-cue and spatial-cue warning stimuli, contingent negative variation (CNV) was elicited in all MCI subgroups. Two independent components (ICA1 and 2) were superimposed in the time range on the CNV. The ICA2 was strongly reduced in sd-dMCI compared to sd-aMCI and md-aMCI (4.3 vs. 7.5% and 10.9% of the CNV component). The parietal P300 ERP latency increased significantly in sd-dMCI compared to md-aMCI and sd-aMCI for both congruent and incongruent conditions. This latency for incongruent targets allowed for a highly accurate separation of sd-dMCI from both sd-aMCI and md-aMCI with correct classification rates of 90 and 81%, respectively. This EEG parameter alone performed much better than neuropsychological testing in distinguishing sd-dMCI from md-aMCI. Our data reveal qualitative changes in the composition of the neural generators of CNV in sd-dMCI. In addition, they document an increased latency of the executive P300 component that may represent a highly accurate hallmark for the discrimination of this MCI subgroup in routine clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we present a detailed structural characterization by means of transmission electron microscopy and Raman spectroscopy of polymorphous silicon (pm-Si:H) thin films deposited using radio-frequency dust-forming plasmas of SiH4 diluted in Ar. Square-wave modulation of the plasma and gas temperature was varied to obtain films with different nanostructures. Transmission electron microscopy and electron diffraction have shown the presence of Si crystallites of around 2 nm in the pm-Si:H films, which are related to the nanoparticles formed in the plasma gas phase coming from their different growth stages, named particle nucleation and coagulation. Raman scattering has proved the role of the film nanostructure in the crystallization process induced ¿in situ¿ by laser heating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cross-sectional diffusion tensor imaging (DTI) studies revealed significant white matter changes in mild cognitive impairment (MCI), the utility of this technique in predicting further cognitive decline is debated. Thirty-five healthy controls (HC) and 67 MCI subjects with DTI baseline data were neuropsychologically assessed at one year. Among them, there were 40 stable (sMCI; 9 single domain amnestic, 7 single domain frontal, 24 multiple domain) and 27 were progressive (pMCI; 7 single domain amnestic, 4 single domain frontal, 16 multiple domain). Fractional anisotropy (FA) and longitudinal, radial, and mean diffusivity were measured using Tract-Based Spatial Statistics. Statistics included group comparisons and individual classification of MCI cases using support vector machines (SVM). FA was significantly higher in HC compared to MCI in a distributed network including the ventral part of the corpus callosum, right temporal and frontal pathways. There were no significant group-level differences between sMCI versus pMCI or between MCI subtypes after correction for multiple comparisons. However, SVM analysis allowed for an individual classification with accuracies up to 91.4% (HC versus MCI) and 98.4% (sMCI versus pMCI). When considering the MCI subgroups separately, the minimum SVM classification accuracy for stable versus progressive cognitive decline was 97.5% in the multiple domain MCI group. SVM analysis of DTI data provided highly accurate individual classification of stable versus progressive MCI regardless of MCI subtype, indicating that this method may become an easily applicable tool for early individual detection of MCI subjects evolving to dementia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.