956 resultados para Chitosan derivatives
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
Six crystal structures of substituted 2-chloroquinoline derivatives have been analysed to evaluate the role of Cl atom as a self recognizing unit resulting in the formation of Cl center dot center dot center dot Cl and C-H center dot center dot center dot Cl interactions to generate supramolecular assembly in the solid state. The features of Type I and Type II geometries associated with Cl center dot center dot center dot Cl interactions have been analysed to show directional preferences leading to differences in the packing motifs in these crystal structures. C-H center dot center dot center dot Cl interactions are generated exclusively in structures depicting Type II Cl center dot center dot center dot Cl interaction have been observed in these structures.
Resumo:
Use of natural xanthine derivates in medicine is complicated with their physical properties. Theobromine is poorly soluble while theophylline is highly sensitive to hydration. The aim of this study was to improve bioavailability of xanthines by co-crystallization, theophylline was also cocrystallized with carboxylic acids (capric, citric, glutaric, malenic, malonic, oxalic, stearic, succinic) and HPMC. Co-crystallization was performed by slow evaporation and ball milling. Physical stability was checked by wet granulation and water sorption methods, solubility was measured by intrinsic tablet dissolution. Theobromine formed co-crystal with other xanthines and theophylline interacted with all acids except stearic and HPMC, the latter showed alternative interactions based on hydrogen bonding. Hydration resistance was good in theophylline:succinic acid co-crystal and excellent in complexes containing capric, stearic acids and HPMC. Theophylline:HPMC showed improved solubility. The reported approach can promote use of xanthines and can be recommended for other compounds with similar problems.
Resumo:
Preparation, thermal analysis and IR spectra of a number of transition metal hydrazidocarbonates have been described. Metal hydrazido carbonates decompose exothermically through oxalate and carbonate intermediates to the respective metal oxides. Reaction of ammonium carbonate with hydrazine hydrate yields hydrazinium derivative of hydrazidocarbonic acid; N2H3COON2H5
Resumo:
On the basis of N(1s) core-level spectroscopic studies, it is found that nitrogen interacts with multimolecular films of C60. More interestingly, mass spectrometric studies show that contact-arc vaporization of graphite in a partial atmosphere of N2 or NH3 yields nitrogenous products tentatively assigned to species such as C70N2, C59N6, C59N4, and C59N2 involving addition of or substitution by nitrogen along with the species due to C2 and C4 losses.
Resumo:
The free-base octabromotetraphenylporphyrin (H2OBP) has been prepared by a novel bromination reaction of (meso-tetraphenylporphyrinato)copper(II). The metal [V(IV)O, Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II), Pt(II)] derivatives exhibit interesting electronic spectral features and electrochemical redox properties. The electron-withdrawing bromine substituents at the pyrrole carbons in H2OBP and M(OBP) derivatives produce remarkable red shifts in the Soret (50 nm) and visible bands (100 nm) of the porphyrin. The low magnitude of protonation constants (pK3 = 2.6 and pK4 = 1.75) and the large red-shifted Soret and visible absorption bands make the octabromoporphyrin unique. The effect of electronegative bromine substituents at the peripheral positions of the porphyrin has been quantitatively analyzed by using the four-orbital approach of Gouterman. A comparison of MO parameters of MOBP derivatives with those of the meso-substituted tetraphenylporphyrin (M(TPP)) and unsubstituted porphine (M(P)) derivatives provides an explanation for the unusual spectral features. The configuration interaction matrix element of the M(OBP) derivatives is found to be the lowest among the known substituted porphyrins, indicating delocalization of ring charge caused by the increase in conjugation of p orbitals of the bromine onto the ring orbitals. The electron-transfer reactivities of the porphyrins have been dramatically altered by the peripheral bromine substituents, producing large anodic shifts in the ring and metal-centered redox potentials. The increase in anodic shift in the reduction potential of M(OBP)s relative to M(TPP)s is found to be large (550 mV) compared to the shift in the oxidation potential (300 mV). These shifts are interpreted in terms of the resonance and inductive interactions of the bromine substituents.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
Transition metal ammonium double sulphates (NH4)2M(SO4)2· 6H2O, where M = Fe, Co and Ni react with hydrazine hydrate in air giving crystalline compounds of the general formula (N2H5) [M(N2H3COO)3] H2O. The reaction proceeds through (N2H5)2 M(SO4)2, · 3N2H4, (N2H5)2 [M(OH)4 · (N2H4)2], M(N2H3COO)2 · (N2H4)2 and N2H5 [M(N2 H3 COO)3] intermediates. The reaction sequence is followed by chemical analysis and infrared spectra. A possible reaction mechanism has been suggested.
Resumo:
The Infrared spectra of carbohydrazide, diprotonated carbohydrazide and their deuterated compounds have been measured in the solid state. From the results on thio- and selenocarbohydrazides and other related molecules and normal coordinate analyses using a Urey-Bradley force field assignments of the fundamental vibrational frequencies and a description of the normal modes of carbohydrazide, diprotonated carbohydrazide and their deuterated species are given.