957 resultados para Chemical and biological parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to find leading compounds with an excellent fungicidal activity, the tide compound 2-(1,3-dithiolan-2-yl-idene) -1-phenyl-2-(1,2,4-triazol-1-yl) ethanone was synthesized according to the biological isosterism and its structure was confirmed by means of IR, MS, H-1 NMR and elemental analysis. The single crystal structure of the tide compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound exhibits some biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title compound, N'-(4-methoxybenzylidene)-2-(1H-1,2,4-triazol-1-yl)acetohydrazide, was synthesized and its structure was confirmed by means of IR, MS,H-1 NMR and elemental analysis. The single crystal structure of the title compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound has a low antifungal activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis is to outline the synthetic chemistry involved in the preparation of a range of novel lanostane and cholestane derivatives, and subsequent investigation into their biological activity in cancer cells. The biological results obtained throughout the project have driven the strategic synthesis of new compounds, in an effort to optimise the anti cancer potential of lanostane and cholestane derivatives. The first chapter begins with an overview of steroidal compounds and details a literature review of the natural sources of these moieties, as well as their biosynthesis and reported synthetic derivatives. The biological activity of interesting natural and synthetic analogues is also discussed. In addition, an insight into some currently prescribed pharmaceutical compounds, with functional groups relevant to this project, is presented. The second chapter discusses the methods employed for the synthesis of these novel lanostane and cholestane derivatives, and comprises three main sections. Firstly, various oxidation products of lanosterol are synthesised, mainly via epoxidations of the C-8,9 and C- 24,25 alkenes, and also allylic oxidations at these positions. Secondly, amine derivatives of lanosterol are formed by cleaving the lanostane side chain, thereby yielding a new cholestane nucleus, and performing several reductive aminations on the resulting key aldehyde intermediates. Various amines such as piperidine, morpholine, diethylamine and aniline are employed in the reductive amination reactions to yield novel cholestane steroids with amine side chains. Finally, starting from stigmasterol and proceeding with the same methodology of cleaving the steroidal side chain and subsequently performing reductive aminations, novel cholestane derivatives of the biologically active amines are synthesised. The cytotoxicity of these compounds against CaCo-2 and U937 cell lines is presented in terms of percentage viability of cells, IC50 value and apoptosis. The MTT assay is used to determine the percentage viability of cells, and the IC50 data is generated from the MTT results. Apoptosis is measured in terms of fold increase relative to a carrier control. In summary, the compounds formed are discussed in terms of chemical synthesis, spectroscopic interpretation and biological activity. The main reaction pathways involved in the chemistry within this project are various oxidations and reductive amination. The final chapter is a detailed account of the full experimental procedures for the compounds synthesised during this work, including characterisation using spectroscopic and analytical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Moorea Coral Reef Long Term Ecological Research project funded by the US National Science Foundation includes multidisciplinary studies of physical processes driving ecological dynamics across the fringing reef, back reef, and fore reef habitats of Moorea, French Polynesia. A network of oceanographic moorings and a variety of other approaches have been used to investigate the biological and biogeochemical aspects of water transport and retention processes in this system. There is evidence to support the hypothesis that a low-frequency counterclockwise flow around the island is superimposed on the relatively strong alongshore currents on each side of the island. Despite the rapid flow and flushing of the back reef, waters over the reef display chemical and biological characteristics distinct from those offshore. The patterns include higher nutrient and lower dissolved organic carbon concentrations, distinct microbial community compositions among habitats, and reef assemblages of zooplankton that exhibit migration behavior, suggesting multigenerational residence on the reef. Zooplankton consumption by planktivorous fish on the reef reflects both retention of reef-associated taxa and capture by the reef community of resources originating offshore. Coral recruitment and population genetics of reef fishes point to retention of larvae within the system and high recruitment levels from local adult populations. The combined results suggest that a broad suite of physical and biological processes contribute to high retention of externally derived and locally produced organic materials within this island coral reef system. © 2013 by The Oceanography Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for chemical and biological entities of predetermined selectivity and affinity towards target analytes is greater than ever, in applications such as environmental monitoring, bioterrorism detection and analysis of natural toxin contaminants in the food chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in nitrogen fate and transport in different catchments types is often not considered. This research considers the importance of such nitrogen processes within groundwater pathways in two agricultural catchments in Ireland; a well drained catchment, underlain by karstified Carboniferous limestone, and a poorly drained catchment, underlain by Silurian greywacke.
Depth specific low-flow groundwater sampling was used to evaluate the hydrochemical stratification in groundwater. Groundwater samples, as well as surface water samples, along river courses were analysed for nitrogen species (NO3, NH4 and NO2) and nitrate isotopes (d15N and d18O) as well as field parameters and major ions
.
The dominant nitrate (NO3) groundwater pathway in the poorly drained greywacke catchment is through the shallow weathered bedrock, as indicated by transmissivity values and the ionic and isotopic signatures, and a clear reduction in NO3 concentration is observed with depth. A similar chloride trend would suggest dilution is a major factor, however d15N and d18O isotopic values producing an enrichment ratio of 1.8 indicate that denitrification is also an important process involved in the fate of the NO3 within the groundwater flow system. This consistent trend with depth is in contrast to the stratification pattern observed in the karstified catchment. NO3 was not detected in the shallow groundwater pathway; the dominant groundwater pathway is in the deeper groundwater where there is little change in the nitrate isotope values with depth (d15N values range between 4.1 and 4.6 ‰). This deeper groundwater contributes the dominant proportion of the river flow through a number of springs. As a result, the deeper groundwater, springs and river have a similar ionic signature and NO3 concentration range (23 ± 3 mg/l). Despite this pattern, the NO3 isotopes show a distinct difference in isotopic values between the deeper groundwater in the diffuse karst and the springs indicating some denitrification is occurring during groundwater discharge into the river. Furthermore the isotopes give an indication of the variability of the spatial extent of the springs and the complexities of the fissures through which they are fed. The results of this study clearly show the importance of the geology in the fate and transport of NO3 in agricultural catchments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of "water structure" has been invoked to explain all manner of aqueous phenomena. Here we look at the origins of this tendency to understand solute hydration in terms of structural changes in bulk water, and consider the validity of one particular example: the classification of small solutes as chaotropic or kosmotropic, and the putative relation of this terminology to notions of structure-making and structure-breaking in the solvent. We doubt whether complex phenomena such as Hofmeister and osmolyte effects on macromolecules can be understood simply on the basis of a change in solvent structure. Rather, we argue that chaotropicity, if understood in the original sense, arises from the activities that solutes exert on macromolecular systems, as well as from deviations of solvation water from bulk-like behaviour. If applied judiciously, chaotropicity remains a potent, biologically pertinent parameter useful for classifying and understanding solution phenomena in all types of living system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive and specific competitive ELISA on 96-microwell plates was developed for the analysis of the nonsteroidal anti-inflammatory drug diclofenac. Within the water cycle in Europe, this is one of the most frequently detected pharmaceutically active compounds. The LOD at a signal-tonoise ratio (S/N) of 3, and the IC 50, were found to be 6 ng/L and 60 ng/L respectively in tap water. In a comparative study using ELISA and GC-MS, diclofenac levels in wastewater from 21 sewage treatment plants were determined and a good correlation between these methods was found (ELISA vs. GCMS: r = 0.70, slope = 0,90, intercept = 0.37, n = 24). An average degradation rate of -25% can be calculated. Labscale-experiments on the elimination of diclofenac in continuous pilot sewage plants revealed a removal rate of only 5% over a period of 13 weeks. In a further study, the ELISA was applied to a number of extracts of various animal tissues from a range of species, and again a very good relationship between ELISA and LC-ESI/MS data sets was obtained (r = 0.90, p<0.0001; n = 117). The ELISA has proven to be a simple, rapid, reliable and affordable alternative to otherwise costly and advanced techniques for the detection of diclofenac in matrix diverse water samples and tissue extracts after only relatively simple sample preparation. © 2007 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil mesofauna and bacteria recovered from a paleosol in a moraine situated adjacent to the inland ice, Antarctica, and dating to the earliest glacial event in the Antarctic Dry Valleys opens several questions. The most important relates to understanding of the mineralogy and chemistry of the weathered substrate habitat in which Coleoptera apparently thrived at some point in the Early/Middle Miocene and perhaps earlier. Here, Coleoptera remains are only located in one of six horizons in a paleosol formed in moraine deposited during the alpine glacial event (> 15 Ma). A tendency for quartz to decrease upward in the section may be a detrital effect or a product of dissolution in the early stage of profile morphogenesis when climate was presumably milder and the depositing glacier of temperate type. Discontinuous distributions of smectite, laumontite, and hexahydrite may have provided nutrients and water to mesofauna and bacteria during the early stage of biotic colonization of the profile. Because the mesofauna were members of burrowing Coleoptera species, future work should assess the degree to which the organisms occupied other sites in the Dry Valleys in the past. Whereas there is no reasonable expectations of finding Coleoptera/insect remains on Mars, the chemistry and mineralogy of the paleosol is within a life expectancy window for the presence of microorganisms, principally bacteria and fungi. Thus, parameters discussed here within this Antarctic paleosol could provide an analogue to identifying similar fossil or life-bearing weathered regolith on Mars.