318 resultados para Caldera


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho é uma aplicação em laboratório do método de Potencial Espontâneo de Geofísica de Campo. Pares de diferentes rochas e solos residuais foram colocados em contato em laboratório para determinar se poderiam produzir diferença de potencial, como tem sido ocasionalmente observado durante investigações de campo. As amostras de rochas utilizadas foram calcário, basalto e riolito da área da Caldeira de Los Humeros em México. Os solos residuais são da área MM1 da Serra dos Carajás, Pará, Brasil. As medidas foram efetuadas usando sistema em seco (umidade relativa ambiente) e sistema úmido (com água adicionada). As mudanças nos potenciais medidos para as rochas e solos no laboratório mostram diferença no valor médio desde 5 mv até 50 mv entre os diferentes lados em contato. Assim o resultado desta investigação é positiva e indica que mudanças nos valores de Potencial Espontâneo podem originar-se desde mudanças nos tipos superficiais de solo ou pelo contato entre diferentes tipos de rochas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Grupo Iricoumé compreende rochas vulcânicas efusivas e piroclásticas, com texturas e estruturas bastante preservadas, que pertence a um extenso evento vulcano-plutônico que marcou a região central do Cráton Amazônico durante o Orosiriano. Tais rochas estão expostas no noroeste do estado do Pará, na porção meridional do sudoeste do Domínio Erepecuru-Trombetas, sul do Escudo das Guianas. Estudos petrográficos permitiram distinguir um vulcanismo explosivo, predominante e representado por rochas piroclásticas (ignimbritos, reoignimbritos, tufo coignimbrítico de queda e lápili-tufo relacionado a surge), e um efusivo, subordinado, representado por fluxos de lavas coerentes e rochas hipabissais (andesitos, lamprófiros espessartíticos e latitos). A maioria das rochas piroclásticas exibe feições diagnósticas da deposição dos piroclastos sob altas temperaturas, sugerindo que as rochas vulcânicas estão provavelmente relacionadas a ambientes de geração de caldeiras. As idades Pb-Pb de 1888 ± 2,5 e 1889 ± 2 Ma obtidas em zircão de ignimbritos traquidacíticos confirmam que a maioria das rochas estudadas pertence ao Grupo Iricoumé. Por outro lado, a idade Pb-Pb de 1992 ± 3 Ma obtida em zircão de um andesito evidencia um episódio vulcânico efusivo orosiriano mais antigo, já reconhecido, localmente, mais a sul, no Domínio Tapajós. Os dados obtidos demonstram a ampla extensão do vulcanismo Iricoumé e rochas vulcânicas correlatas na porção central do Cráton Amazônico, e constituem argumentos favoráveis para associar esse episódio vulcânico e rochas magmáticas correlatas a uma silicic large igneous province (SLIP), como já vem sendo descrito por alguns autores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUMEN. Se ha llevado a cabo un modelo de flujo de aguas subterráneas en la desembocadura del Barranco de La Aldea (Gran Canaria). El área fue discretizada tridimensionalmente en celdas de 50x50 m considerando 3 capas. La capa superior está constituida por materiales sedimentarios y volcánicos (aluvial, derrubios de ladera y basaltos alterados) y las capas intermedia e inferior por basaltos. Se ha realizado un modelo en régimen estacionario simulando el año hidrológico medio 1991/92 y transitorio para el período de 1991/92-1998/99. Los límites norte, sur y este se han definido como bordes impermeables, la línea de costa se ha definido como nivel constante y la cabecera del barranco se ha simulado mediante un tramo de caudal prefijado representando el aporte de la cuenca alta del barranco. Las entradas en la zona son: recarga por lluvia, retornos de riego, pérdidas en la red de abastecimiento, cabecera del barranco principal y desde la zona de intra-caldera. Las salidas son: bombeos y descarga al mar. El borde inferior se define por el flujo nulo en el contacto entre los basaltos alterados y sin alterar. En el cauce de los barrancos se ha impuesto una condición de dren y las extracciones se han localizado según los datos obtenidos de las captaciones de la zona. Los parámetros resultantes de la calibración del modelo, en particular, la transmisividad, son del mismo orden que los obtenidos en estudios previos modelo. Por otro lado, los niveles calculados y observados presentan un buen ajuste y el balance hídrico resulta consistente. ABSTRACT. A groundwater flow model in La Aldea ravine lower part (Gran Canaria) has been developed. The zone has been tridimensionally discretized as cells of 50 x 50 m considering 3 layers. The superficial layer is formed by sedimentary and volcanic materials (Alluvial, screes and altered basalts) and the intermediate and lower layers are basalts. The model has been developed in stationary state for the average hydrologic year 1991/92 and in transitory state for the period of 1991/92-1998/99. The North, South and East limits have been defined as null flow boundary conditions, the coast line has been defined as constant level and the ravine bed at the east has been defined as a constant flow, representing the contribution from the upper ravine basin. Recharge is a result of rainfall, irrigation returns, supply network leaks and inflow from the intra-caldera zone. Discharge takes place by pumping wells and flows towards the sea. The bottom surface is defined as a null flow condition in the limit between altered and unaltered basalts. A drain condition has been imposed in the ravine and the pumping wells extraction has been located. The simulation results indicate that the transmisivities obtained in previous works present the same order of magnitude than the obtained in the model and the calculated levels are in good agreement with the observed levels measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]El presente proyecto se centra en aplicar técnicas de biología molecular, demográficas y de biología reproductiva en cuatro endemismos canarios amenazados que se encuentran total o parcialmente localizados en los parques nacionales de Canarias: Silene nocteolens Webb & Berthel. (Parque Nacional del Teide, Tenerife); Ilex perado ssp. lopezlilloi (G. Kunkel) A. Hansen & Sunding (Parque Nacional Garajonay, La Gomera), Sorbus aria (L.) Crantz (Parque Nacional de la Caldera de Taburiente, La Palma) y Bencomia exstipulata Svent. (parques nacionales del Teide y Caldera de Taburiente). Se estableció un estudio genético a través de marcadores moleculares hipervariables, microsatélites, y se determinó para cada taxón la variación genética de sus poblaciones, para su posterior aplicación en la gestión en el ámbito de la Biología de la conservación de estos taxones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES] El valle de La Aldea, al oeste de Gran Canaria, se dedica a la agricultura intensiva en un clima semi-árido. El agua de riego proviene de aguas superficiales y subterráneas. El acuífero está aislado del resto de la isla por el borde impermeable de la Caldera de Tejeda. El aluvial principal de La Aldea se comporta como un depósito de almacenamiento de agua que se llena y vacía, con un tiempo medio de renovación de aproximadamente 2 años. Las aguas subterráneas muestran una alta salinidad de origen natural, debido a la evapoconcentración de la deposición atmosférica y la interacción agua-roca, y antropogénica debida a los retornos de riego que producen contenidos en nitratos que pueden alcanzar los 700 mg/L. Se ha establecido un modelo conceptual de funcionamiento del acuífero y se han cuantificado los términos del balance de agua. El uso actual del acuífero está en conflicto con los requerimientos de la Directiva Marco del Agua (DMA). Sin embargo, dado que su uso es clave para el desarrollo económico del valle de La Aldea en particular, cabe plantear las excepciones legales específicas previstas en la DMA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-frequency seismograms contain features that reflect the random inhomogeneities of the earth. In this work I use an imaging method to locate the high contrast small- scale heterogeneity respect to the background earth medium. This method was first introduced by Nishigami (1991) and than applied to different volcanic and tectonically active areas (Nishigami, 1997, Nishigami, 2000, Nishigami, 2006). The scattering imaging method is applied to two volcanic areas: Campi Flegrei and Mt. Vesuvius. Volcanic and seismological active areas are often characterized by complex velocity structures, due to the presence of rocks with different elastic properties. I introduce some modifications to the original method in order to make it suitable for small and highly complex media. In particular, for very complex media the single scattering approximation assumed by Nishigami (1991) is not applicable as the mean free path becomes short. The multiple scattering or diffusive approximation become closer to the reality. In this thesis, differently from the ordinary Nishigami’s method (Nishigami, 1991), I use the mean of the recorded coda envelope as reference curve and calculate the variations from this average envelope. In this way I implicitly do not assume any particular scattering regime for the "average" scattered radiation, whereas I consider the variations as due to waves that are singularly scattered from the strongest heterogeneities. The imaging method is applied to a relatively small area (20 x 20 km), this choice being justified by the small length of the analyzed codas of the low magnitude earthquakes. I apply the unmodified Nishigami’s method to the volcanic area of Campi Flegrei and compare the results with the other tomographies done in the same area. The scattering images, obtained with frequency waves around 18 Hz, show the presence of high scatterers in correspondence with the submerged caldera rim in the southern part of the Pozzuoli bay. Strong scattering is also found below the Solfatara crater, characterized by the presence of densely fractured, fluid-filled rocks and by a strong thermal anomaly. The modified Nishigami’s technique is applied to the Mt. Vesuvius area. Results show a low scattering area just below the central cone and a high scattering area around it. The high scattering zone seems to be due to the contrast between the high rigidity body located beneath the crater and the low rigidity materials located around it. The central low scattering area overlaps the hydrothermal reservoirs located below the central cone. An interpretation of the results in terms of geological properties of the medium is also supplied, aiming to find a correspondence of the scattering properties and the geological nature of the material. A complementary result reported in this thesis is that the strong heterogeneity of the volcanic medium create a phenomenon called "coda localization". It has been verified that the shape of the seismograms recorded from the stations located at the top of the volcanic edifice of Mt. Vesuvius is different from the shape of the seismograms recorded at the bottom. This behavior is justified by the consideration that the coda energy is not uniformly distributed within a region surrounding the source for great lapse time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES] Miles de fragmentos óseos pertenecientes a medio millar de cabras domésticas de los pobladores de Fuerteventura durante el primer milenio de nuestra Era han sido extraídos en las excavaciones arqueológicas realizadas en la Cueva de Villaverde. Algunas de las piezas óseas estaban más completas y han permitido atisbar el aspecto de esa casta paleo-canaria que no ha subsistido en las islas, salvo quizás hasta hace poco en la Caldera de Taburiente en La Palma, puesto que ya en los siglos XVI y XVII se cruzó numerosísimas veces con ejemplares de muy diversos lugares de Europa para obtener la gran productividad lechera que caracteriza hoy a las cabras de Fuerteventura.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During this work has been developed an innovative methodology for continuous and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete data of the geochemical gas composition of fumarole at Campi Flegrei; it is only since the early ’80 that exist a systematic record of fumaroles with discrete sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted in a time series of geochemical analysis with discontinuous periods of time set (in average 2-3 measurements per month) completely inadequate for the purposes of Civil Defence in such high volcanic risk and densely populated areas. For this purpose, and to remedy this lack of data, during this study was introduced a new methodology of continuous and in situ sampling able to continuously detect data related and from its soil diffusive degassing. Due to its high sampling density (about one measurement per minute therefore producing 1440 data daily) and numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good statistic record and the reconstruction of the gas composition evolution of the investigated area. This methodology is based on continuous sampling of fumaroles gases and soil degassing using an extraction line, which after undergoing a series of condensation processes of the water vapour content - better described hereinafter - is analyzed through using a quadrupole mass spectrometer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shear-wave splitting can be a useful technique for determining crustal stress fields in volcanic settings and temporal variations associated with activity. Splitting parameters were determined for a subset of local earthquakes recorded from 2000-2010 at Yellowstone. Analysis was automated using an unsupervised cluster analysis technique to determine optimum splitting parameters from 270 analysis windows for each event. Six stations clearly exhibit preferential fast polarization values sub-orthogonal to the direction of minimum horizontal compression. Yellowstone deformation results in a local crustal stress field differing from the regional field dominated by NE-SW extension, and fast directions reflect this difference rotating around the caldera maintaining perpendicularity to the rim. One station exhibits temporal variations concordant with identified periods of caldera subsidence and uplift. From splitting measurements, we calculated a crustal anisotropy of ~17-23% and crack density ~0.12-0.17 possibly resulting from stress-aligned fluid filled microcracks in the upper crust and an active hydrothermal system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.