941 resultados para CURRENT DENSITY-VOLTAGE CHARACTERISTICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of aluminosilicate (Al2SiO5) on the upturn characteristics of ZnO varistor ceramics has been investigated. Addition of Al2SiO5 shifts the point of upturn above 10(4) A cm(-2). The extended nonlinearity in the high current density region is better correlatable to the presence of higher density of trap stales and changing pattern of trap depths at the grain boundary interface as much as the grain interior conductivity. Microstructure studies show the formation and involvement of a liquid phase during sintering. The secondary phases, predominantly are antimony spinel, Zn7Sb2O12, zinc silicate, Zn2SiO4 and magnesium aluminium silicate. MgAl2Si3O10. Energy dispersive X-ray analyses (EDAX) show that Al and Si are distributed more in the grain boundaries and within the secondary phases than in the grain interiors. Capacitance-voltage analyses and dielectric dispersion studies indicate the presence of negative capacitance and associated resonance, indicative of the oscillatory charge redistribution involving increased trapping at the interface states. The admittance spectroscopy data show that the type of trap slates remains unaltered whereas the addition of Al2SiO5 increases the density of low energy traps. (C) 1997 Published by Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current�voltage characteristics of Au/n-GaAs Schottky diodes grown by metal-organic vapor-phase epitaxy on Ge substrates were determined in the temperature range 80�300 K. The zero-bias barrier height for current transport decreases and the ideality factor increases at low temperatures. The ideality factor was found to show the T0 effect and a higher characteristic energy. The excellent matching between the homogeneous barrier height and the effective barrier height was observed and infer good quality of the GaAs film. No generation�recombination current due to deep levels arising during the GaAs/Ge heteroepitaxy was observed in this study. The value of the Richardson constant was found to be 7.04 A K?2 cm?2, which is close to the value used for the determination of the zero-bias barrier height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

YMnO3 thin films were grown on an n-type Si substrate by nebulized spray pyrolysis in the metal-ferroelectric-semiconductor (MFS) configuration. The capacitance-voltage characteristics of the film in the MFS structure exhibit hysteretic behaviour consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of the interface states decreases with increasing annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current, measured in the accumulation region, is lower in well-crystallized thin films and obeys a space-charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of the Arrhenius plot reveals that the activation energy corresponds to oxygen vacancy motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vacuum interrupter is extensively employed in the medium voltage switchgear for the interruption of the short-circuit current. The voltage across the arc during current interruption is termed as the arc voltage. The nature and magnitude of this arc voltage is indicative of the performance of the contacts and the vacuum interrupter as a whole. Also, the arc voltage depends on the parameters like the magnitude of short-circuit current, the arcing time, the point of opening of the contacts, the geometry and area of the contacts and the type of magnetic field. This paper investigates the dependency of the arc voltage on some of these parameters. The paper also discusses the usefulness of the arc voltage in diagnosing the performance of the contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emission from carbon nanotubes (CNTs) in the form of arrays or thin films give rise to several strongly correlated process of electromechanical interaction and degradation. Such processes are mainly due to (1) electron-phonon interaction (2) electromechanical force field leading to stretching of CNTs (3) ballistic transport induced thermal spikes, coupled with high dynamic stress, leading to degradation of emission performance at the device scale. Fairly detailed physics based models of CNTs considering the aspects (1) and (2) above have already been developed by these authors, and numerical results indicate good agreement with experimental results. What is missing in such a system level modeling approach is the incorporation of structural defects and vacancies or charge impurities. This is a practical and important problem due to the fact that degradation of field emission performance is indeed observed in experimental I-V curves. What is not clear from these experiments is whether such degradation in the I-V response is due to dynamic reorientation of the CNTs or due to the defects or due to both of these effects combined. Non-equilibrium Green’s function based simulations using a tight-binding Hamiltonian for single CNT segment show up the localization of carrier density at various locations of the CNTs. About 11% decrease in the drive current with steady difference in the drain current in the range of 0.2-0.4V of the gate voltage was reported in literature when negative charge impurity was introduced at various locations of the CNT over a length of ~20nm. In the context of field emission from CNT tips, a simplistic estimate of defects have been introduced by a correction factor in the Fowler-Nordheim formulae. However, a more detailed physics based treatment is required, while at the same time the device-scale simulation is necessary. The novelty of our present approach is the following. We employ a concept of effective stiffness degradation for segments of CNTs, which is due to structural defects, and subsequently, we incorporate the vacancy defects and charge impurity effects in the Green’s function based approach. Field emission induced current-voltage characteristics of a vertically aligned CNT array on a Cu-Cr substrate is then simulated using a detailed nonlinear mechanistic model of CNTs coupled with quantum hydrodynamics. An array of 10 vertically aligned and each 12 m long CNTs is considered for the device scale analysis. Defect regions are introduced randomly over the CNT length. The result shows the decrease in the longitudinal strain due to defects. Contrary to the expected influence of purely mechanical degradation, this result indicates that the charge impurity and hence weaker transport can lead to a different electromechanical force field, which ultimately can reduce the strain. However, there could be significant fluctuation in such strain field due to electron-phonon coupling. The effect of such fluctuations (with defects) is clearly evident in the field emission current history. The average current also decreases significantly due to such defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi-layered Aurivillius compounds prove to be efficient candidates of nonvolatile memories. SrBi2Nb2O9 thin films were deposited by excimer laser ablation at low substrate temperature (400 °C) followed by an ex situ annealing at 750 °C. The polarization hysteresis behavior was confirmed by variation of polarization with the external applied electric field and also verified with capacitance versus voltage characteristics. The measured values of spontaneous and remnant polarizations were, respectively, 9 and 6 μC/cm2 with a coercive field of 90 kV/cm. The measured dielectric constant and dissipation factors at 100 kHz were 220 and 0.02, respectively. The frequency analysis of dielectric and ac conduction properties showed a distribution of relaxation times due to the presence of multiple grain boundaries in the films. The values of activation energies from the dissipation factor and grain interior resistance were found to be 0.9 and 1.3 eV, respectively. The deviation in these values was attributed to the energetic conditions of the grain boundaries and bulk grains. The macroscopic relaxation phenomenon is controlled by the higher resistive component in a film, such as grain boundaries at lower temperatures, which was highlighted in the present article in close relation to interior grain relaxation and conduction properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first demonstration of metal-insulator-metal (MIM) capacitors with Eu2O3 dielectric for analog and DRAM applications. The influence of different anneal conditions on the electrical characteristics of the fabricated MIM capacitors is studied. FG anneal results in high capacitance density (7 fF/mu m(2)), whereas oxygen anneal results in low quadratic voltage coefficient of capacitance (VCC) (194 ppm/V-2 at 100 kHz), and argon anneal results in low leakage current density (3.2 x 10(-8) A/cm(2) at -1 V). We correlate these electrical results with the surface chemical states of the films through X-ray photoelectron spectroscopy measurements. In particular, FG anneal and argon anneal result in sub-oxides, which modulate the electrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p-Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6x10-2 Pa and at different substrate temperatures in the range 303 673 K. The films formed at 303 K were X-ray amorphous whereas those deposited at substrate temperatures?=?473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p-Si sandwich structure was fabricated and performed currentvoltage and capacitancevoltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8?x?10-6 to 5.4?x?10-8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler-Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin sulphide (SnS) quantum dots of size ranging from 2.4 to 14.4 nm are prepared by chemical precipitation method in aqueous media. Growth of the SnS particles is monitored by controlling the deposition time. Both XRD and SAED patterns confirm that the particles possess orthorhombic structure. The uncapped SnS particles showed secondary phases like Sn2S3 and SnS2 which is visible in the SAED pattern. From the electrochemical characterization. HOMO-LUMO levels of both TiO2 and SnS are determined and the band alignment is found to be favorable for electron transfer from SnS to TiO2. Moreover, the HOMO-LUMO levels varied for different particle sizes. Solar cell is fabricated by sensitizing porous TiO2 thin film with SnS QDs. Cell structure is characterized with and without buffer layer between FTO and TiO2. Without the buffer layer, cell showed an open circuit voltage (V-oc) of 504 mV and short circuit current density (J(sc)) of 2.3 mA/cm(2) under AM1.5 condition. The low fill factor of this structure (15%) is seen to be increased drastically to 51%, on the incorporation of the buffer layer. The cell characteristics are analyzed using two different size quantum dots. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-oxide semiconductor capacitors based on titanium dioxide (TiO2) gate dielectrics were prepared by RF magnetron sputtering technique. The deposited films were post-annealed at temperatures in the range 773-1173 K in air for 1 hour. The effect of annealing temperature on the structural properties of TiO2 films was investigated by X-ray diffraction and Raman spectroscopy, the surface morphology was studied by atomic force microscopy (AFM) and the electrical properties of Al/TiO2/p-Si structure were measured recording capacitance-voltage and current-voltage characteristics. The as-deposited films and the films annealed at temperatures lower than 773 K formed in the anatase phase, while those annealed at temperatures higher than 973 K were made of mixtures of the rutile and anatase phases. FTIR analysis revealed that, in the case of films annealed at 1173 K, an interfacial layer had formed, thereby reducing the dielectric constant. The dielectric constant of the as-deposited films was 14 and increased from 25 to 50 with increases in the annealing temperature from 773 to 973 K. The leakage current density of as-deposited films was 1.7 x 10(-5) and decreased from 4.7 X 10(-6) to 3.5 x 10(-9) A/cm(2) with increases in the annealing temperature from 773 to 1173 K. The electrical conduction in the Al/TiO2/p-Si structures was studied on the basis of the plots of Schottky emission, Poole-Frenkel emission and Fowler-Nordheim tunnelling. The effect of structural changes on the current-voltage and capacitance-voltage characteristics of Al/TiO2/p-Si capacitors was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hafnium dioxide (HfO2) films, deposited using electron beam evaporation, are optimized for high performance back-gated graphene transistors. Bilayer graphene is identified on HfO2/Si substrate using optical microscope and subsequently confirmed with Raman spectroscopy. Back-gated graphene transistor, with 32 nm thick HfO2 gate dielectric, has been fabricated with very high transconductance value of 60 mu S. From the hysteresis of the current-voltage characteristics, we estimate the trap density in HfO2 to be in the mid 10(11)/cm(2) range, comparable to SiO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the rectification properties from a single ZnS nanorod measured using the UHV-SPM technique. The rectification behavior is evidenced from the current-voltage characteristics measured on a single ZnS nanorod. We propose a tunneling mechanism where the direct tunneling mechanism is dominant at lower applied bias voltages followed by resonant tunneling through discrete energy levels of the nanorod. A further increase in the bias voltage changes the tunneling mechanism to the Fowler-Nordheim tunneling regime enabling rectification behavior. Realizing rectification from a single ZnS nanorod may provide a means of realizing a single nanorod based miniaturized device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on glass and silicon (100) substrates by the sol-gel method. The influence of film thickness and annealing temperature on optical transmittance/reflectance of TiO2 films was studied. TiO2 films were used to fabricate metal-oxide-semiconductor capacitors. The capacitance-voltage (C-V), dissipation-voltage (D-V) and current-voltage (I-V) characteristics were studied at different annealing temperatures and the dielectric constant, current density and resistivity were estimated. The loss tangent (dissipation) increased with increase of annealing temperature.