907 resultados para CROSS-LINKED CHAINS
Resumo:
Chitosan (CS)-polyvinyl alcohol (PVA) cross-linked with sulfosuccinic acid (SSA) and modified with sulfonated polyethersulfone (SPES) mixed-matrix membranes are reported for their application in direct methanol fuel cells (DMFCs). Polyethersulfone (PES) is sulfonated by chlorosulfonic acid and factors affecting the sulfonation reaction, such as time and temperature, are studied. The ion-exchange capacity, degree of sulfonation, sorption, and proton conductivity for the mixed-matrix membranes are investigated. The mixed-matrix membranes are also characterised for their mechanical and thermal properties. The methanol-crossover flux across the mixed-matrix membranes is studied by measuring the mass balance of methanol using the density meter. The methanol cross-over for these membranes is found to be about 33% lower in relation to Nafion-117 membrane. The DMFC employing CS-PVA-SPES mixed-matrix membrane with an optimum content of 25 wt % SPES delivers a peak power-density of 5.5 mW cm-2 at a load current-density of 25 mA cm-2 while operating at 70 degrees C. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 M corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 M corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.
Resumo:
A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.
Resumo:
The objective of this work was to develop a versatile strategy for preparing biodegradable polymers with tunable properties for biomedical applications. A family of xylitol-based cross-linked polyesters was synthesized by melt condensation. The effect of systematic variation of chain length of the diacid, stoichiometric ratio, and postpolymerization curing time on the physicochemical properties was characterized. The degradation rate decreased as the chain length of the diacid increased. The polyesters synthesized by this approach possess a diverse spectrum of degradation (ranging from similar to 4 to 100% degradation in 7 days), mechanical strength (from 0.5 to similar to 15 MPa) and controlled release properties. The degradation was a first-order process and the rate constant of degradation decreased linearly as the hydrophobicity of the polyester increased. In controlled release studies, the order of diffusion increased with chain length and curing time. The polymers were found to be cytocompatible and are thus suitable for possible use as biodegradable polymers. This work demonstrates that this particular combinatorial approach to polymer synthesis can be used to prepare biomaterials with independently tunable properties.
Resumo:
A family of soybean oil (SO) based biodegradable cross-linked copolyesters sourced from renewable resources was developed for use as resorbable biomaterials. The polyesters were prepared by a melt condensation of epoxidized soybean oil polyol and sebacic acid with citric acid (CA) as a cross-linker. D-Mannitol (M) was added as an additional reactant to improve mechanical properties. Differential scanning calorimetry revealed that the polyester synthesized using only CA as the cross-linker was semicrystalline and elastomeric at physiological temperature. The polymers were hydrophobic in nature. The water wettability, elongation at break and the degradation rate of the polyesters decreased with increase in M content or curing time. Modeling of release kinetics of dyes showed a diffusion controlled mechanism underlies the observed sustained release from these polymers. The polyesters supported attachment and proliferation of human stem cells and were thus cytocompatible. Porous scaffolds induced osteogenic differentiation of the stern cells suggesting that these polymers are well suited for bone tissue engineering. Thus, this family of polyesters offers a low cost and green alternative as biocompatible, bioresobable polymers for potential use as resorbable biomaterials for tissue engineering and controlled release.
Resumo:
Fiction stir processing (FSP) is a solid state technique used for material processing. Tool wear and the agglomeration of ceramic particles have been serious issues in FSP of metal matrix composites. In the present study, FSP has been employed to disperse the nanoscale particles of a polymer-derived silicon carbonitride (SiCN) ceramic phase into copper by an in-situ process. SiCN cross linked polymer particles were incorporated using multi-pass ESP into pure copper to form bulk particulate metal matrix composites. The polymer was then converted into ceramic through an in-situ pyrolysis process and dispersed by ESP. Multi-pass processing was carried out to remove porosity from the samples and also for the uniform dispersion of polymer derived ceramic particles. Microstructural observations were carried out using Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) of the composite. The results indicate a uniform distribution of similar to 100 nm size particles of the ceramic phase in the copper matrix after ESP. The nanocomposite exhibits a five fold increase in microhardness (260HV(100)) which is attributed to the nano scale dispersion of ceramic particles. A mechanism has been proposed for the fracturing of PDC particles during multi pass FSP. (C) 2015 Elsevier Ltd. All rights reserved
Resumo:
(p) ppGpp, a secondary messenger, is induced under stress and shows pleiotropic response. It binds to RNA polymerase and regulates transcription in Escherichia coli. More than 25 years have passed since the first discovery was made on the direct interaction of ppGpp with E. coli RNA polymerase. Several lines of evidence suggest different modes of ppGpp binding to the enzyme. Earlier cross-linking experiments suggested that the beta-subunit of RNA polymerase is the preferred site for ppGpp, whereas recent crystallographic studies pinpoint the interface of beta'/omega-subunits as the site of action. With an aim to validate the binding domain and to follow whether tetra-and pentaphosphate guanosines have different location on RNA polymerase, this work was initiated. RNA polymerase was photo-labeled with 8-azido-ppGpp/8-azido-pppGpp, and the product was digested with trypsin and subjected to mass spectrometry analysis. We observed three new peptides in the trypsin digest of the RNA polymerase labeled with 8-azido-ppGpp, of which two peptides correspond to the same pocket on beta'-subunit as predicted by X-ray structural analysis, whereas the third peptide was mapped on the beta-subunit. In the case of 8-azido-pppGpp-labeled RNA polymerase, we have found only one cross-linked peptide from the beta'-subunit. However, we were unable to identify any binding site of pppGpp on the beta-subunit. Interestingly, we observed that pppGpp at high concentration competes out ppGpp bound to RNA polymerase more efficiently, whereas ppGpp cannot titrate out pppGpp. The competition between tetraphosphate guanosine and pentaphosphate guanosine for E. coli RNA polymerase was followed by gel-based assay as well as by a new method known as DRaCALA assay.
Resumo:
We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in nonpolar organic solvents. The active conjugated groups, which are highly attracted to the graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and cross-linked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that the pyrene-siloxane surfactant is very effective in dispersing multiwall nanotubes, while the porphyrin-siloxane makes single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Nesta dissertação, duas resinas reticuladas comerciais (denominadas, AmberliteGT73 e AmberliteIRC748) foram empregadas para suportar partículas de prata. Os grupos tiol da GT73 e ácido iminodiacético da IRC748 presentes nessas resinas foram empregados para a fixação de íons Ag+ a partir de solução aquosa. Posteriormente, os íons Ag+ foram reduzidos pelo emprego de três redutores diferentes em pH alcalino, denominados hidrazina, hidroxilamina e formaldeído (pH 12). A morfologia e a impregnação de prata dos materiais binários assim obtidos foram avaliadas por meio de microscópio eletrônico de varredura equipado com detector de elétrons retro-espalhados (SEM-BSE). O detector de espectrometria de energia dispersiva de raios-X (EDAX) acoplado ao SEM permitiu a observação de partículas de prata. Os espectros de raios-X revelaram a presença do metal nas superfícies interna e externa das microesferas dos compósitos. A quantidade de prata incorporada foi determinada pelo método titulométrico, empregando solução padrão de tiocianato de potássio. As características antibactericidas dos compósitos foram avaliadas em colunas contendo pérolas de resina por onde foram percoladas suspensões da bactéria Escherichia coli auxotrópica AB1157 (tipo selvagem) nas concentrações de 103 a 107 células/mL. A avaliação biocida mostrou que estes materiais foram completamente bactericidas, sendo efetivos na eliminação da bactéria em poucos minutos. Esta ação biocida foi atribuída à combinação da atuação da prata e dos grupos funcionais das resinas
Resumo:
Neste trabalho, foram utilizadas três resinas reticuladas comerciais de troca iônica e caráter ácido à base de estireno e divinilbenzeno: AmberliteGT73 da Rohm and Haas Co. com grupo tiol, Lewatit VPOC1800 da Bayer Co. com grupo sulfônico e Amberlyst 15WET da Rohm and Haas Co. também com grupo sulfônico. As citadas resinas comerciais foram escolhidas por apresentarem grande capacidade de troca iônica, estabilidade e grupos funcionais de interesse para a introdução de íons Ag+. As resinas foram tratadas com ácido clorídrico para garantir as formas ácidas de seus grupos funcionais e em seguida a redução dos íons Ag+, provenientes de solução de nitrato de prata, foi realizada in situ pela hidroxilamina em presença de solução protetora de colóide composta por 2-hidróxi-etil-celulose e gelatina 1:1. Alguns parâmetros foram modificados durante a redução dos íons Ag+ a Ag0, como por exemplo, o tempo de adição da solução redutora de hidroxilamina, a solução utilizada para controle do pH, e condições do repouso após o controle do pH. Após a incorporação das nanopartículas de prata, tanto as resinas comerciais quanto o produto final foram caracterizados por titulometria, fluorescência de raios-x, análise termogravimétrica, análise elementar, grau de inchamento, difração de raios-x, microscopias ótica e eletrônica. A avaliação da atividade biocida foi realizada através do método da contagem em placas utilizando-se uma cepa de Escherichia Coli ATCC25922TM em concentrações de 103 a 107 células/mL. Todos os compósitos obtidos mostraram atividade bactericida significante, sendo que foi possível perceber que a ação bactericida dos compósitos está relacionada com a presença de prata na forma metálica e a características como tamanho, formato e dispersão das partículas na matriz polimérica. Para efeito de comparação, foram realizados ensaios bactericidas com os copolímeros de partida e assim foi comprovado que a ação bactericida pôde ser atribuída somente às nanopartículas de prata
Resumo:
Studies on the dissociation of histones from chromatin by increasing concentrations of sodium deoxycholate (DOC) have shown that histrone II is removed at lowest concentrations of DOC, while slightly higher concentrations remove histones III and IV. Still higher concentrations remove histone I.
The complete separation of chromatin and 14C-DOC by sucrose sedimentation indicated that the binding of DOC to chromatin is readily and completely reversible.
The dissociation of histones from chromatin by increasing concentrations of related cholanic acids and some of their conjugated derivatives were studied. The results suggested that the driving force for the interaction between the cholanic acid anion and histones is the lowering of the activity coefficient of the cholanic acid anion which occurs when it is partially removed from solution by interaction with hydrophobic regions of the positively charged histones.
The role of histones in the structure of chromatin has been studied by comparing the effects of selective removal of histones from chromatin by increasing concentrations of DOC with those caused by NaCl (removes histone I at lowest concentrations, while higher concentrations remove histones II, III, and IV). Properties studied included thermal denaturation, sedimentation velocity, flow dichroism, relaxation times of molecules oriented in a flow field, and the irreversible disruption of a 130 S, cross-linked component of sheared chromatin. The data indicated that none of the structural or chemical parameters with which these properties are correlated show a dependence on the presence of one particular histone fraction.
The template activity (ability to prime a 0.2 M KC1 DNA-dependent RNA synthesis system catalyzed by E. coli RNA polymerase) increases from that of native chromatin (approximately 25 per cent of that pure DNA) to that of pure DNA in a fashion which shows a nearly linear relationship to the amount of histone coverage of the template. The precipitability of partially dehistonized chromatin samples in 0.15 M NaCl shows a large dependence on the presence of histone I.
Resumo:
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).
Resumo:
Comunicación (Poster) en panel del congreso: Designing New Heterogeneous Catalysts, Faraday Discussion, 4–6 April 2016. London, United Kingdom.
Resumo:
O aumento da prevalência da obesidade e osteoporose, bem como a identificação de mecanismos comuns que ligam a osteogênese e a adipogênese, sugerem que a obesidade e osteoporose podem ser distúrbios relacionados, e além disso, ambos podem ter suas origens no início da vida. Em 3 modelos diferentes de plasticidade ontogenética foi observado obesidade na vida adulta. Sendo assim, o objetivo deste trabalho foi investigar o impacto desses 3 modelos, o desmame precoce mecânico (DPM) e o farmacológico (DPF), e a supernutrição neonatal (SN) no tecido ósseo da prole durante o desenvolvimento. Para tanto, 2 experimentos foram realizados. No experimento 1, ratas lactantes foram divididas em 3 grupos: controle - os filhotes tiveram livre acesso ao leite durante toda a lactação; DPM - as mães foram envolvidas com uma atadura nos últimos 3 dias de lactação; DPF - as mães foram tratadas com bromocriptina (0,5 mg/duas vezes/dia) 3 dias antes do desmame padrão. No experimento 2, o tamanho da ninhada foi reduzido para 3 filhotes machos no 3o dia de lactação até o desmame (SN); o grupo controle permaneceu com 10 filhotes durante toda a lactação. Realizou-se absorciometria de raios-x de dupla energia, tomografia computadorizada, microtomografia computadorizada, teste biomecânico e análises séricas. Os dados foram considerados significativos quando P<0,05. No experimento 1, ao desmame, os filhotes DPM e DPF apresentaram menor massa corporal, massa gorda, densidade mineral óssea total (DMO), conteúdo mineral ósseo total (CMO), área óssea e osteocalcina sérica, e maior telopeptídeo carboxi-terminal do colágeno tipo I (CTX-I). O cálcio ionizado sérico foi menor apenas na prole DPM, a 25-hidroxivitamina D (25(OH)D) foi maior e o PTH menor apenas na prole DPF. Aos 180 dias, as proles DPM e DPF apresentaram maior massa corporal, maior massa de gordura visceral, hiperleptinemia, maior 25(OH)D e menor CTX-I. Ambos os grupos apresentaram aumento da DMO total, do CMO, da DMO da coluna vertebral e da área óssea aos 150 e 180 dias de idade. Nas avaliações ósseas individuais, as proles DPM e DPF também apresentaram aumento da DMO do fêmur e da vértebra lombar, da radiodensidade da cabeça femoral e do corpo vertebral; melhora da microarquitetura trabecular óssea e da resistência óssea. No experimento 2, observamos aumento da massa corporal, da massa gorda e da massa magra, do CMO e da área óssea no grupo SN desde o desmame até a idade adulta. Aos 180 dias, a prole SN também apresentou aumento da DMO total, da DMO do fêmur e da vértebra lombar, da radiodensidade da cabeça femoral e do corpo vertebral; melhora da microarquitetura trabecular óssea e da resistência óssea, maior osteocalcina e menor CTX-I. Demonstramos que, apesar de fatores de imprinting opostos, ambos os modelos causam melhora da massa, do metabolismo, da qualidade e da resistência óssea. Porém, parece que este efeito protetor sobre o tecido ósseo não é um resultado direto da programação deste tecido, mas sim consequência das alterações fisiopatológicas da obesidade programada pelos três modelos.