989 resultados para COUPLED QUANTUM-WELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical transient current spectroscopy (OTCS), photoluminescence (PL) spectroscopy and excitonic electroabsorption spectroscopy have been used to investigate the evolution of defects in the low-temperature grown GaAs/AlGaAs multiple quantum well structures during the postgrowth rapid thermal annealing. The sample was grown at 350 degrees C by molecular beam epitaxy on miscut (3.4 degrees off (001) towards (111)A) (001) GaAs substrate. After growth, the sample was subjected to 30s rapid thermal annealing in the range of 500-800 degrees C. It is found that the integrated PL intensity first decreases with the annealing temperature, then gets a minimum at 600 degrees C and finally recovers at higher temperatures. OTCS measurement shows that besides As,, antisites and arsenic clusters, there are several relatively shallower deep levels with excitation energies less than 0.3 eV in the as-grown and 500 degrees C-annealed samples. Above 600 degrees C, OTCS signals from As,, antisites and shallower deep levels become weaker, indicating the decrease of these defects. It is argued that the excess arsenic atoms group together to form arsenic clusters during annealing. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the fabrication of circular waveguide photodetectors with a response near 1.3 mu m wavelength using SiGe/Si multiple quantum wells. The quantum efficiency of the circular waveguide photodetector is improved when compared with that of the rib waveguide photodetector in the same wavelength at 1.3 mu m The frequency response of the photodetectors is simulated. The emciency-bandwidth product of the circular waveguide photodetectors is improved correspondingly. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binding energy of an exciton bound to an ionized donor impurity (D+,X) located st the center or the edge in GaAs-AlxGa1-xAs quantum wells is calculated variationally for the well width from 10 to 300 Angstrom by using a two-parameter wave function, The theoretical results are discussed and compared with the previous experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells are suggested by the bias dependence of the photocurrent spectra of p-i-n photodiodes. Both Stark redshift and blueshift have been observed for the same sample in the different ranges of electric fields applied to the quantum wells. The turnaround point corresponds to a certain electric field (named "critical" field). This phenomenon was generally predicted by Austin in 1985 [Phys. Rev. B 31, 5569 (1985)] and calculated in detail for SiGe quantum structure by Kim recently [Thin Solid Films 321, 215 (1998)]. The critical electric field obtained from the photocurrent spectra is in reasonable agreement with the theoretical prediction. (C) 2000 American Institute of Physics. [S0021-8979(00)03711-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the effect of rapid thermal annealing (RTA) on highly strained InGaAs/GaAs quantum wells by using photoluminescence (PL) and double-crystal X-ray diffraction (DCXRD) measurements. It is found that a distinct additional PL emission peak can be observed for the annealed samples. This PL emission possesses features similar to the PL emission from InGaAs/GaAs quantum dots (QDs) with the same indium content. It is proposed that this emission stems from QDs, which were formed during the annealing process. This formation is attributed to the favorable diffusion due to the inhomogeneous strain distribution in the InGaAs layer intersurface. The DCXRD measurements also confirm that the dominant relaxation is strain enhanced diffusion under the low annealing temperatures. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At a medium substrate temperature of 400 degrees C and a lower As flux, we have grown an ultrafast AlGaAs/GaAs photorefractive multiple quantum well (MQW) structure by molecular beam epitaxy. The as-grown sample exhibits strong photorefractive effect under the transverse Frantz-Keldysh geometry. A peak electroabsorption of 2100 cm(-1) is measured in the as-grown sample in an 11 kV/cm dc electric field, and the peak photorefractive diffraction efficiency can be 1.2%. After postgrowth annealing, the photorefractive effect becomes weak and disappears in samples annealed above 700 degrees C. Using optical transient current spectroscopy, deep levels are measured in these samples. It is found that deep levels are stable against annealing until 700 degrees C. Using a pump-probe technique, carrier lifetimes are measured at room temperature. We find that the as-grown sample has a lifetime of 20 ps, while the 700 degrees C annealed sample has a lifetime of more than 200 ps. The ultrafast lifetime in the as-grown sample is caused by point defects, not by As clusters. Our result show that AlGaAs/GaAs MQW structure grown around 400 degrees C has better performance of the photorefractive effect. (C) 1999 American Institute of Physics. [S0003-6951(99)04036-X].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the observation of the field-driven blue shift at near absorption edge in the photo-current response spectra of delta-doped Si n-i-p-i multiple quantum wells due to the widening of the effective energy gap. This phenomenon differs from the observed results in GaAs/AlGaAs and GeSi/Si superlattices, because the physical mechanisms of forming energy band in these superlattice samples are different. Our experimental results are interpreted satisfactorily by the theoretical calculation. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) spectroscopy and carrier lifetime measurement has been used to characterize optical properties of defects in the low-temperature (LT) grown GaAs/AlGaAs multiple quantum well structures. Two sets of samples were grown at 400 degrees C by molecular beam epitaxy on nominal (001) and miscut [4 degrees off (001) towards (111) A] GaAs substrates, respectively. After growth, samples were subjected to 30 s rapid thermal annealing at 600-800 degrees C. It is found that after annealing, two defect-related PL features appear in the samples grown on nominal (001) GaAs substrates, but not in those grown on miscut (001) GaAs substrates. The carrier lifetimes are about 31 and 5 ps in as-grown samples grown on nominal and miscut (001) GaAs substrates, respectively. The different PL spectra and carrier lifetimes in two sets of samples are attributed to different structures of the As-Ga-like defects formed during LT growth. (C) 1999 American Institute of Physics. [S0003-6951(99)00230-2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using three analytical phonon models in quantum wells-the slab model, the guided-mode model, and the improved version of the Huang-Zhu model [Phys. Rev. B 38, 13 377 (1998)], -and the phonon modes in bulk, the energy-loss rates of hot carriers due to the Frohlich potential scattering in GaAs/AlAs multiple quantum wells (MQW's) are calculated and compared to those obtained based on a microscopic dipole superlattice model. In the study, a special emphasis is put on the effects of the phonon models on the hot-carrier relaxation process when taking the hot-phonon effect into account. Our numerical results show that, the calculated energy-loss rates based on the slab model and on the improved Huang-Zhu model are almost the same when ignoring the hot-phonon effect; however, with the hot phonon effect considered, the calculated cooling rate as well as the hot phonon occupation number do depend upon the phonon models to be adopted. Out of the four analytical phonon models investigated, the improved Huang-Zhu model gives the results most close to the microscopic calculation, while the guided-mode model presents the poorest results. For hot electrons with a sheet density around 10(12)/cm(2), the slab model has been found to overestimate the hot-phonon effect by more than 40% compared to the Huang-Zhu model, and about 75% compared to the microscopic calculation in which the phonon dispersion is fully included. Our calculation also indicates that Nash's improved version [J. Lumin. 44, 315 (1989)] is necessary for evaluating the energy-loss rates in quantum wells of wider well width, because Huang-Zhu's original analytical formulas an only approximately orthogonal for optical phonons associated with small in-plane wave numbers. [S0163-1829(99)08919-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength tuning of exciton emissions has been achieved simply by inserting an InAs submonolayer at the centre of GaAs quantum wells during molecular beam epitaxy growth. Photoluminescence measurements show that the emission energy can be effectively tuned from the quantum-well-determined energy down to less than the band gap of GaAs, depending on the well width as well as the InAs layer thickness. Using the effective-mass approximation, the tuning effect can be well predicted theoretically The results reported here may provide an alternative way to tune the wavelength in optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrawell and interwell transfers of excitons are observed by a temperature-dependent continuous-wave photoluminescence study of growth-interrupted single quantum wells. The intrawell transfer among the interface localization areas suggests a thermodynamic equilibrium between energy relaxation via LO-phonon emission and thermal population via phonon absorption. Thermal population is dominant in wider wells while relaxation is clearly observable in a four-monolayer narrow well at low temperatures. Interwell transfer of excitons also occurs between two narrow wells. (C) 1998 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in InxGa1-xAs/InyAl1-yAs one-side-modulation-doped asymmetric step quantum wells. Samples with electron density n(s) between 0.8 and 5.3 x 10(12) cm(-2) rue studied. Strong recombination involving one to three populated electron subbands with the first heavy-hole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the InGaAs/InAlAs step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of InGaAs/InAlAs step quantum wells in microelectronic and optoelectronic devices. (C) 1998 Elsevier Science Ltd. All rights reserved.