611 resultados para CNPQ::ENGENHARIAS::ENGENHARIA MECANICA::MECANICA DOS SOLIDOS
Resumo:
Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance
Resumo:
We present two models of blocks made of composite material obtained from the use of cement, plaster, EPS crushed, shredded tire, mud, sand and water, for the construction of popular housing. Were made metal molds for the manufacture of blocks to be used in the construction of a residence for low-income families. Performed tests of compressive strength of the composite for various formulations that met the specific standard for blocks used in construction. To study the thermal conductivity of the composite for further study of thermal comfort generated in a residence built with the proposed composite. We also determined the mass-specific and water absorption for each formulation studied. Using a home already built with another composite material, made up the closing of a window with the building blocks and found the thermal insulation, measuring external and internal temperatures of the blocks. The blocks had made good thermal insulation of the environment, resulting in differences of up to 12.6°C between the outer and inner faces. It will be shown the feasibility of using composite for the end proposed and chosen the most appropriate wording
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite
Resumo:
In this work was developed an information system to apply the concepts of CAD3D-BIM technology for the design activities of the furniture industry. The development of this system was based in an architecture comprised of two modules: a web interface to management the metadata of models from furniture's library and the combination of three-dimensional CAD software with a specific plugin to access the information from this model. To develop this system was also used a Data Base Management System (DBMS) designed to storage the information from models in a hierarchical way, based on concepts of Group Technology (GT). The centralization of information in a single database allows the automatic availability of any changes to all participants involved in a particular project when it‟s happens. Each module from system has its own connection to this database. Finally was developed a prototype from a 3D virtual environment to help create Virtual Reality projects in the web. A study from available technologies to create 3D web applications for execution in websites was done to support this development. The interconnection between modules and the database developed allowed the assembly of a system architecture to support the construction and exhibition of projects of the furniture industry in accordance with the concepts proposed by BIM (Building Information Modeling), using as object of study the furniture industry of state of Rio Grande do Norte
Resumo:
This work presents the analysis of data collected by Universidade Federal do Rio Grande do Norte and State Public Prosecution Office experts concerning to current situation of liquid fuel resale stations, its forms of storage and its technical apparatus for the performance of primary functions (supply of vehicles) and secondary (car washing, storage of used oil, oil change etc.). The data presented were analyzed in the setting of the city of Natal (RN) and considering its characteristics, potentialities and weaknesses. Thereafter, it was discussed liquid fuels resale pollution potential in the city and legal provisions directed to implementation of Green Seal. The discussion involves three agents: environmental, legal and technical ones, applied to all 110 resale fuel stations which were analyzed
Resumo:
In this study we used the plasma as a source of energy in the process of carbothermic reduction of rutile ore (TiO2). The rutile and graphite powders were milled for 15 h and placed in a hollow cathode discharge produced by in order to obtain titanium carbonitride directly from the reaction, was verified the influence of processing parameters of plasma temperature and time in the synthesis of TiCN. The reaction was carried out at 600, 700 and 800˚C for 3 to 4 hours in an atmosphere of nitrogen and argon. During all reactions was monitored by plasma technique of optical emission spectroscopy (EEO) to check the active species present in the process of carbothermal reduction of TiO2. The powder obtained after the reactions were characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The technique of EEO were detected in all reactions the spectra CO and NO, and these gas-phase resulting from the reduction of TiO2. The results of X-ray diffraction confirmed the reduction, where for all conditions studied there was evidence of early reduction of TiO2 through the emergence of intermediate oxides. In the samples reduced at 600 and 700˚C, there was only the phase Ti6O11, those reduced to 800˚C appeared Ti5O9 phases, and Ti6O11 Ti7O13, confirming that the carbothermal reduction in plasma, a reduction of the ore rutile (TiO2) in a series of intermediate titanium oxide (TinO2n-1) where n varies between 5 and 10
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
To take care of to the demand of the new constructions in the low income communities and to develop the production of a strengthened alternative brick with staple fibers of coconut, capable to contribute mainly with the recycling of the green and mature coconut in the urban and agricultural lexes, this research was developed, to confection bricks of soil-cement with coconut fiber. Ecologically correct material and of low cost, since the greenhouse use of or oven for burning will be manufactured without. The study it presents a set of tables and graphs that prove good indices found in the values of the density, water absorption, axial compressive strength and isolation term acoustics, with evidential results that make possible the production in industrial character with press mechanics or the place of the workmanship with manual form. The preparation of coconut staple fibers was made of natural form without use of chemical products not to deprive of characteristics the properties mechanical physicist-chemistries and of the same ones. The sixty bricks produced in simple and manual press had been carried through in four lots of fifteen units. The mixture of aggregates was made in four different traces composites for: ground erinaceous, cement, fiber of dry coconut and water; the bricks had been compact in the press and cured in natural way under an area covered during the minimum time of seven days
Resumo:
It presents a direct exposure to solar dryer for drying of food, built from a scrap of luminaire. The dryer works under direct exposure to natural circulation. Will be presented their methods of construction and assembly of that dryer that allows the reuse of materials, constituting a environmentally correct recycling dryer main features proposed are its low cost and simple manufacturing processes and assembly. Test results will be presented for the drying of foods that prove the feasibility and cost of thermal solar drying alternative system proposed. It is worth emphasizing the social importance that such application is for the most excluded since the value-added fruits, vegetables, legumes and other foods in relation to fresh may represent an option of income generation. It will also study the transformation of some of dry food meal and demonstrated that the drying times for the foods tested are competitive and sometimes pointed in the solar literature
Resumo:
With a view to revitalizing public environments through criteria that include economy, tourism, aesthetics and respect for the environment, this paper proposes a model of kiosk manufactured with composite material blocks, to be employed as a public instrument. . The model consists of a structure composed of planned blocks and manufactured in cement-based composite, gypsum, ground and water, having the styrofoam inside filled with pet bottles of 500 ml dose. The social and environmental issue is the critical point of the work when it can, through the reuse of environmentally harmful materials such as polyethylene terephthalate PET, using such modules for the construction of various areas of Commerce, promoting the protection of the environment combined with the improvement of the quality of life of the population. The tourism factor, which is significant in the economy of the North, is also considered as the modulated kiosk has a visual aspect innovative and differentiated. The environmental issue is addressed by encouraging the reuse of PET material and EPS (polystyrene)
Resumo:
Composite materials can be defined as materials formed from two or more constituents with different compositions, structures and properties, which are separated by an interface. The main objective in producing composites is to combine different materials to produce a single device with superior properties to the component unit. The present study used a composite consisting of plaster, cement, EPS, tire, PET and water to build prototype solar attempt to reduce the manufacturing cost of such equipment. It was built two box type solar cookers, a cooler to be cooled by solar energy, a solar dryer and a solar cooker concentration. For these prototypes were discussed the processes of construction and assembly, determination of thermal and mechanical properties, and raising the performance of such solar systems. Were also determined the proportions of the constituents of the composite materials according to specific performance of each prototype designed. This compound proved to be feasible for the manufacture of such equipment, low cost and easy manufacturing and assembly processes
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
In the present work, three composites with distinct reinforcements (polyester, modal e polyester + modal), all if a unsaturated orthophthalic polyester resin as matrix were used, in order to conduct a comparative study by mechanical tests and water absorption. The fibre mats were prepared in a mat preparatory by immersion developed in the Textile Engineering Laboratory. The composites were manufactured using a closed mould process by compression using an unsaturated orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as an initiator. In each composite twelve samples with the dimensions of 150x25x3 mm were cut randomly for the mechanical analysis (tension x extension, three points bending and water absorption and Scanning Electron Micsroscopy). The mechanical tests were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN . All the analyses were carried out according to the ASTM norms. The resultant samples from the mechanical analysis were subjected for the Scanning Electron Microscopy analysis. Based on the results obtained, it was observed that the reinforced composite with two fibres (modal + polyester) presented better results in comparison to the other two composites both in the tension/extension as well on the three point bending tests. In the water absorption test, it was possible to observe an equilibrium in the water absorption by the modal and polyester composite, due to the union of the two fibres. In the SEM images, the regions of rupture in the composites as well as the adsorption between the fiber and the matrix could be observed
Resumo:
Composites based on PEEK + PTFE + CARBON FIBER + Graphite (G_CFRP) has increased application in the top industries, as Aerospace, Aeronautical, Petroleum, Biomedical, Mechanical and Electronics Engineering challenges. A commercially available G_CFRP was warmed up to three different levels of thermal energy to identify the main damage mechanisms and some evidences for their intrinsic transitions. An experimental test rig for systematize a heat flux was developed in this dissertation, based on the Joule Effect. It was built using an isothermal container, an internal heat source and a real-time measurement system for test a sample by time. A standard conical-cylindrical tip was inserted into a soldering iron, commercially available and identified by three different levels of nominal electrical power, 40W (manufacturer A), 40W (manufacturer B), 100W and 150W, selected after screening tests: these power levels for the heat source, after one hour of heating and one hour of cooling in situ, carried out three different zones of degradation in the composite surface. The bench was instrumented with twelve thermocouples, a wattmeter and a video camera. The twelve specimens tested suffered different degradation mechanisms, analyzed by DSC (Differential Scanning Calorimetry) and TG (Thermogravimetry) techniques, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Rays (EDX) Analysis. Before and after each testing, it was measured the hardness of the sample by HRM (Hardness Rockwell M). Excellent correlations (R2=1) were obtained in the plots of the evaporated area after one hour of heating and one hour of cooling in situ versus (1) the respective power of heat source and (2) the central temperature of the sample. However, as resulting of the differential degradation of G_CFRP and their anisotropy, confirmed by their variable thermal properties, viscoelastic and plastic properties, there were both linear and non-linear behaviour between the temperature field and Rockwell M hardness measured in the radial and circumferential directions of the samples. Some morphological features of the damaged zones are presented and discussed, as, for example, the crazing and skeletonization mechanism of G_CFRP
Resumo:
Currently there is still a high demand for quality control in manufacturing processes of mechanical parts. This keeps alive the need for the inspection activity of final products ranging from dimensional analysis to chemical composition of products. Usually this task may be done through various nondestructive and destructive methods that ensure the integrity of the parts. The result generated by these modern inspection tools ends up not being able to geometrically define the real damage and, therefore, cannot be properly displayed on a computing environment screen. Virtual 3D visualization may help identify damage that would hardly be detected by any other methods. One may find some commercial softwares that seek to address the stages of a design and simulation of mechanical parts in order to predict possible damages trying to diminish potential undesirable events. However, the challenge of developing softwares capable of integrating the various design activities, product inspection, results of non-destructive testing as well as the simulation of damage still needs the attention of researchers. This was the motivation to conduct a methodological study for implementation of a versatile CAD/CAE computer kernel capable of helping programmers in developing softwares applied to the activities of design and simulation of mechanics parts under stress. In this research it is presented interesting results obtained from the use of the developed kernel showing that it was successfully applied to case studies of design including parts presenting specific geometries, namely: mechanical prostheses, heat exchangers and piping of oil and gas. Finally, the conclusions regarding the experience of merging CAD and CAE theories to develop the kernel, so as to result in a tool adaptable to various applications of the metalworking industry are presented