328 resultados para CHEMILUMINESCENCE
Resumo:
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)(3)(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)(3)(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cm x 25 mum (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1 mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 muA), with end-column Ru(bpy)(3)(2+) ECL detection. A 5 mmol/L Ru(bpy)(3)(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9 x 10(-7) mol/L and 7.6 x 10(-9) mol/L for Spd and Spm, respectively.
Resumo:
Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 mum in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l(-1) running buffer, the calibration curve of diphenhydramine was linear over the range of 4 x 10(-8) to 1 x 10(-5) Mol l(-1). This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.
Resumo:
A flow-injection electrochemiluminescent method for L-cysteine determination has been developed based on its enhancement of the electrochemiluminecence of luminol at a glassy carbon electrode. This method is simple and sensitive for cysteine determination. Under the selected experimental parameters, the linear range for cysteine concentration was 1.0 x 10(-6) - 5.0 x 10(-5) mol/l, and the detection limit was 0.67 mumol/l (SIN = 3). The relative standard deviation for 11 measurements of 1.0 x 10(-5) mol/l cysteine was 4.5%. The proposed method has been applied to. the detection of cysteine in pharmaceutical injections with satisfactory results.
Resumo:
A flow injection method has been developed for the determination of dopamine based on its inhibition of the electrochemiluminescence of luminol. This method is simple and sensitive for dopamine detection. Under the selected experimental conditions, the decreased electrochemiluminescent intensity is linear with dopamine concentration in the range of 5.0 x 10(-8)-1.0 x 10(-5) mol/L with a detection limit of 30 nmol/L. The relative standard deviation of eleven determinations is 1.9% for 1.0 x 10(-6) mol/L dopamine. The proposed method has been applied to the detection of dopamine in pharmaceutical injections with satisfactory results.
Resumo:
capillary electrophoresis (CE) is characterized. A 300 mum diameter Pt working electrode was used to directly couple with a 75 mum inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy)(3)(2+) showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy)(3)(2+) in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 mum capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 20-260 mum. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 mum capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 X 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 X 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-1) mol/L.
Resumo:
We report capillary electrophoresis coupling to a solid-state electrochemiluminescence (ECL) detector for the first time. The solid-state ECL detector was fabricated by immobilizing the ECL reagent tris(2,2'-bipyridyf)ruthenium (TBR) in poly-(p-styrenesulfonate)-silica-poly(vinyl alcohol) grafting 4-vinylpyridine copolymer films. The excellent stability of the solid-state ECL detector in the phosphate solution satisfied application in CE. The CE with solid-state ECL detector system was characterized using tripropylamine (TPA) and proline. The influences of detection potential, the concentration of TBR in the film, and pH value of ECL buffer were investigated. The linear range for TPA and proline was 0.005-10 muM and 5-10 mM with correlation coefficients of 0.997 and 0.998, respectively. The detection limit (signal-to-noise ratio S/N = 3) was estimated to be 0.002 and 2.0 muM for TPA and proline, respectively. The relative standard deviations for 1.0 pm TPA and 1.0 mm proline were 8.7% and 7.5% with theoretical plate numbers of 70 000 and 16 000, respectively. Compared with the CE-ECL of TBR in aqueous solution, the CE coupling with solid-state ECL detector system gave the same sensitivity of analysis.
Resumo:
A novel flow injection optical fiber biosensor for glucose based on luminol electrochemiluminescence (ECL) is presented. The sol-gel method is introduced to immobilize glucose oxidase (GOD) on the surface of a glassy carbon electrode. After optimization of the working conditions, glucose could be quantitated in the concentration ranges between 50 muM and 10 mM with a detection limit of around 26 muM. Signal reproducibility was about 3.62% relative standard deviation for 11 replicated measurements of 0.1 mM glucose. The ECL biosensor also showed good selectivity and operational stability. The proposed method can be applied to determination of glucose in soft drink samples.
Resumo:
Ru(bpy)(3)(2+) electrochemiluminescence (ECL) method and electrocatalysis method were first used to study the ion-gate behavior of supported lipid bilayer membrane (sBLM). We found that sBLM, made of dimethyldioctadecylammonium bromide (a kind of synthetic lipid), showed ion-gate behavior for the permeation of Ru(bpy)(3)(2+) in the presence of perchlorate anion. There existed a threshold concentration (0.1 muM) of perchlorate anion for ion-gate opening. Below the threshold the ion-gate was closed. Above the threshold, the number of opened ion-gate sites increased with the increase of perchlorate anion concentration and leveled off at concentrations higher than 1200 muM. Based on it, a new sensor for perchlorate was developed. Furthermore, the opening and closing of the ion-gate behavior was reversible, which means the sensor can repeatedly be used.
Resumo:
This paper describe a Ru(bpy)(3)(2+) based electrochemiluminescence (ECL) method to detect procyclidine in human urine following separation by capillary electrophoresis (CE). An ECL detection cell was designed for post-column addition of Ru(bpy)(3)(2+). Parameters affecting separation and detection were optimized, leading to a detection limit of 1 x 10(-9) mol/l in an on-capillary stacking mode. For application in urine, a cartridge packed with slightly acidic cation-exchange resin was used to eliminate the matrix effects of urine and improve the detection sensitivity. Extraction recovery was nearly 90%.
Resumo:
The organic-inorganic hybrid, PSS-silica composite material was developed for the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) on glassy carbon electrode via ion-exchange (PSS stands for poly(sodium 4-styrene-sulfonate)). The electrochemiluminescence (ECL) and electrochemistry of Ru(bpy)(3)(2-) immobilized in the composite thin films have been investigated with tripropylamine (TPA) as the coreactant. The immobilized Ru(bpy)(3)(2-) underwent a surface process. The modified electrode was used for the ECL detection of TPA and showed high sensitivity. Detection limit was 0,1 mumol L-1 for TPA (S/N = 3) with a linear range from 0.5 mumol L-1 to 5 mmol L-1 (R = 0.998), Moreover, the resulting modified electrode was stable over six months and the good stability may be due to the strong interaction between Ru(bpy)(3)(2-) and the high ion-exchange able PSS-silica composite films on GCE. Compared with other materials. the PSS-silica composite films containing incorporated Ru(bpy)(3)(2-) showed improved sensitivity and long-term stability, Thus, such composite thin film can be a promising material for the construction of ECL sensor.
Resumo:
A new electrochemiluminescence (ECL) microoptoprobe with simple structure. small sampling volume and high efficiency was developed. It was constructed by fixing the transparent gold mini-grid on the end surface of the optical fiber, and by surrounding the fiber with the counter- and reference electrodes to form a self-contained three-electrode system. The use of mini-grid electrode increased the surface area and collection efficiency. which resulted in higher ECL signal and better sensitivity. The counter electrode together with one end of the fiber formed a mini-vessel, which eliminated the need of additional container and allowed to perform ECL detection in a very small volume (about 10 mul). The microoptoprobe obtained was characterized with the Ru(bpy)(3)(2-)-tripropylamine system and was applied for the determination of oxalate and chlorpromazine (CPZ). Detection limits (S/N = 3) were 5 x 10(-7) and 1 x 10(-6) mol l(-1) for oxalate and CPZ. respectively. The linear range for oxalate and CPZ extended from 1 x 10(-6) to 1 x 10(-3) mol l(-1), and from 5 x 10(-6) to 5 x 10(-4) mol l(-1). respectively.
Resumo:
A novel approach of generating cathodic electrochemiluminescence lof Ru(bpy)(3)(2+) at -0.4 V triggered by reactive oxygen species is reported for detecting alkylamines and some organic acids.
Resumo:
A sol-gel derived ceramic-carbon composite electrode is used for fabrication of a new type of optical fiber biosensor based on luminol electrochemiluminescence (ECL). The electrode consists of graphite powder impregnated with glucose oxidase in a silicate network. In this configuration, the immobilized enzyme oxidizes glucose to liberate hydrogen peroxide and graphite powder provides percolation conductivity for triggering the ECL between luminol and the liberated hydrogen peroxide. Both of the reactions occur simultaneously on the surface of the composite electrode, thereby the response of the biosensor is very fast. The peak intensity was achieved within only 20 s after glucose injection. In addition, the electrode could be renewed by a simple mechanical polishing step in case of contamination or fouling. The linear range extends from 0.01 to 10 mM for glucose and the detection limit is about 8.16 muM. The renewal repeatability and stability of the biosensor are also investigated in detail.
Resumo:
The electrochemiluminescence (ECL) of dichlorotris (1,10-phenanthroline) ruthenium (11) [Ru(phen)(3)(2+)] with peroxydisulfate (S2O82-) was first described. The use of carbon paste electrodes, organic solvent modified electrodes, allowed obtaining ECL in purely aqueous solution. The ECL produced by the reaction of electrogenerated C Ru(phen)(3)(2+) with the strongly oxidizing intermediate SO4-., was observed only when the applied potential was negative enough to reduce Ru(phen)(3)(2+). In comparison with Ru(bpy)(3)(2+)/S2O82- ECL, the Ru(phen)(3)(2+)/O-8(2-)/S2O82- ECL was more stable in aqueous solution. It was not affected by the storage of the carbon paste electrodes, and it quenched only at quite high S2O82- concentrations. The ECL intensity was a function of S2O82- concentration, increasing linearly with the S2O82- concentration from 5 X 10(-6) to 2 X 10(-3) mol l(-1), and dropping off sharply at S2O82- concentration higher than 20 mmol l(-1). The proposed ECL method with Ru(phen)(3)(2+) was sensitive and selective for the determination of S2O82-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Two novel electrochemiluminescent labels, bis(2,2'-bipyridine)[5-(3-carboxylic acid-propionamido)1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate and bis(2,2'-bipyridine)[5-(4-carboxylic acid-butanamido)-1,10-phenanthroline]ruthenium(II) hexafluorophosphate dihydrate, were synthesized and confirmed by IRelemental analysis, and H-1-NMR spectra were completely assigned using the (HH)-H-1-H-1 COSY technique. Cyclic voltammograms with different scan rates showed quasireversible electrochemical behaviour of the two Ru (II) complex labels in MeCN solution. Electronic absorption, photoluminescence and electrochemiluminescence of Ru(II) complexes were also characterized. Copyright (C) 2000 John Wiley & Sons, Ltd.