186 resultados para CATECHOL


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transient A-type K+ channels (IA) in neurons have been implicated in the delay of the spike onset and the decrease in the firing frequency. Here we have characterized biophysically and pharmacologically an IA current in lamprey locomotor network neurons that is activated by suprathreshold depolarization and is specifically blocked by catechol at 100 μM. The biophysical properties of this current are similar to the mammalian Kv3.4 channel. The role of the IA current both in single neuron firing and in locomotor pattern generation was analyzed. The IA current facilitates Na+ channel recovery from inactivation and thus sustains repetitive firing. The role of the IA current in motor pattern generation was examined by applying catechol during fictive locomotion induced by N-methyl-d-aspartate. Blockade of this current increased the locomotor burst frequency and decreased the firing of motoneurons. Although an alternating motor pattern could still be generated, the cycle duration was less regular, with ventral roots bursts failing on some cycles. Our results thus provide insights into the contribution of a high-voltage-activated IA current to the regulation of firing properties and motor coordination in the lamprey spinal cord.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val108/158 Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11–16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dichloroacetamide safeners protect maize (Zea mays L.) against injury from chloroacetanilide and thiocarbamate herbicides. Etiolated maize seedlings have a high-affinity cytosolic-binding site for the safener [3H](R,S)-3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazol-idine ([3H]Saf), and this safener-binding activity (SafBA) is competitively inhibited by the herbicides. The safener-binding protein (SafBP), purified to homogeneity, has a relative molecular weight of 39,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and an isoelectric point of 5.5. Antiserum raised against purified SafBP specifically recognizes a 39-kD protein in etiolated maize and sorghum (Sorghum bicolor L.), which have SafBA, but not in etiolated wheat (Triticum aestivum L.), oat (Avena sativa L.), barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), or Arabidopsis, which lack SafBA. SafBP is most abundant in the coleoptile and scarcest in the leaves, consistent with the distribution of SafBA. SBP1, a cDNA encoding SafBP, was cloned using polymerase chain reaction primers based on purified proteolytic peptides. Extracts of Escherichia coli cells expressing SBP1 have strong [3H]Saf binding, which, like binding to the native maize protein, is competitively inhibited by the safener dichlormid and the herbicides S-ethyl dipropylthiocarbamate, alachlor, and metolachlor. SBP1 is predicted to encode a phenolic O-methyltransferase, but SafBP does not O-methylate catechol or caffeic acid. The acquisition of its encoding gene opens experimental approaches for the evaluation of the role of SafBP in response to the relevant safeners and herbicides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estrogen is a known risk factor in human breast cancer. In rodent models, estradiol has been shown to induce tumors in those tissues in which this hormone is predominantly converted to the catechol metabolite 4-hydroxyestradiol by a specific 4-hydroxylase enzyme, whereas tumors fail to develop in organs in which 2-hydroxylation predominates. We have now found that microsomes prepared from human mammary adenocarcinoma and fibroadenoma predominantly catalyze the metabolic 4-hydroxylation of estradiol (ratios of 4-hydroxyestradiol/2-hydroxyestradiol formation in adenocarcinoma and fibroadenoma, 3.8 and 3.7, respectively). In contrast, microsomes from normal tissue obtained either from breast cancer patients or from reduction mammoplasty operations expressed comparable estradiol 2- and 4-hydroxylase activities (corresponding ratios, 1.3 and 0.7, respectively). An elevated ratio of 4-/2-hydroxyestradiol formation in neoplastic mammary tissue may therefore provide a useful marker of benign or malignant breast tumors and may indicate a mechanistic role of 4-hydroxyestradiol in tumor development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estradiol is converted to catechol estrogens via 2- and 4-hydroxylation by cytochrome P450 enzymes. 4-Hydroxyestradiol elicits biological activities distinct from estradiol, most notably an oxidant stress response induced by free radicals generated by metabolic redox cycling reactions. In this study, we have examined 2- and 4-hydroxylation of estradiol by microsomes of human uterine myometrium and of associated myomata. In all eight cases studied, estradiol 4-hydroxylation by myoma has been substantially elevated relative to surrounding myometrial tissue (minimum, 2-fold; mean, 5-fold). Estradiol 2-hydroxylation in myomata occurs at much lower rates than 4-hydroxylation (ratio of 4-hydroxyestradiol/2-hydroxyestradiol, 7.9 +/- 1.4) and does not significantly differ from rates in surrounding myometrial tissue. Rates of myometrial 2-hydroxylation of estradiol were also not significantly different from values in patients without myomata. We have used various inhibitors to establish that 4-hydroxylation is catalyzed by a completely different cytochrome P450 than 2-hydroxylation. In myoma, alpha-naphthoflavone and a set of ethynyl polycyclic hydrocarbon inhibitors (5 microM) each inhibited 4-hydroxylation more efficiently (up to 90%) than 2-hydroxylation (up to 40%), indicating > 10-fold differences in Ki (<0.5 microM vs. > 5 microM). These activities were clearly distinguished from the selective 2-hydroxylation of estradiol in placenta by aromatase reported previously (low Km, inhibition by Fadrozole hydrochloride or ICI D1033). 4-Hydroxylation was also selectively inhibited relative to 2-hydroxylation by antibodies raised against cytochrome P450 IB1 (rat) (53 vs. 17%). These data indicate that specific 4-hydroxylation of estradiol in human uterine tissues is catalyzed by a form(s) of cytochrome P450 related to P450 IB1, which contribute(s) little to 2-hydroxylation. This enzyme(s) is therefore a marker for uterine myomata and may play a role in the etiology of the tumor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objetivo principal deste estudo foi determinar a origem da inibição do processo foto-Fenton [Fe(II)/Fe(III), H2O2, luz UV] pelo íon cloreto. Um estudo das reações primárias da etapa fotocatalítica do processo foto-Fenton por fotólise por pulso de laser na presença de NaCl mostrou que a inibição reflete: i) fotólise competitiva dos complexos Fe(Cl)2+ e Fe(Cl)2+; ii) captura do radical hidroxila (dependente do pH) pelo íon cloreto. Esses dois processos formam o ânion radical menos reativo Cl2•- em lugar do radical HO•-, provocando uma progressiva inibição da reação de degradação com a diminuição do pH. Modelagem cinética destes resultados previa que a manutenção do pH em 3,0 durante a fotodegradação evitaria a formação do Cl2•-, o que foi confirmada através de experimentos de fotodegradação do fenol e da gasolina em meio aquoso na presença de NaCl. Por outro lado, na degradação do fenol pela reação térmica de Fenton [Fe(II)/Fe(III), H2O2], o radical hidroxila não parece ter um papel muito importante. A degradação térmica não foi inibida pela presença de íon cloreto e a cinética de mineralização do fenol pela reação térmica de Fenton é indistinguível da degradação do fenol pelo processo foto-Fenton inibido por NaCl. Isso sugere que a reação proposta por Hamilton, isto é, a redução de Fe(III) a Fe(II) por catecol (o principal intermediário inicial da oxidação do fenol) na presença de H2O2, é o mecanismo principal de catálise da reação térmica de Fenton no nosso sistema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Transtorno Bipolar (TB) tipo I é uma doença caracterizada por episódios de mania e depressão recorrentes com importante prejuízo do funcionamento global e comprometimento das funções cognitivas. Além disso, sabe-se que o número de episódios de humor patológico ao longo da vida pode também influenciar o funcionamento cognitivo destes sujeitos. Neste cenário, ocorreu a necessidade de se investigar marcadores genéticos para disfunção cognitiva no TB com o objetivo de estudar este fenômeno. Dentre os potenciais genes responsáveis por influenciar a cognição destacam-se os polimorfismos funcionais do fator neurotrófico derivado do cérebro (BDNF), da catecol-O-metiltransferase (COMT), da apolipoproteína-E (APOE) e do canal de cálcio de baixa voltagem subunidade 1-C (CACNA1C). Sabe-se, também, que no TB os marcadores de estresse oxidativo estão aumentados durante todas as fases da doença, entretanto, não é claro qual impacto destes na disfunção cognitiva de indivíduos com TB. O objetivo dessa tese foi avaliar o desempenho cognitivo de pacientes jovens com bipolaridade tipo I e sua associação com o genótipo de BDNF, COMT, APOE e CACNA1C e também com os níveis plasmáticos de oxidação da guanosina (8-OHdG) e citosina (5-Mec) durante os episódios de humor, eutimia e em controles. Para investigar essa associação foram incluídos 116 pacientes (79 em episódio de humor patológico e 37 eutímicos) com diagnóstico de TB tipo I (DSMIV-TR); 97 controles saudáveis foram submetidos à avaliação neuropsicológica e coleta de sangue para extração de DNA visando genotipagem para BDNF (rs6265), COMT (rs4680; rs165599), APOE (rs429358 e rs7412), CACNA1C (rs1006737), 8-OhdG e 5-Mec. A análise dos dados obtidos revelou que pacientes portadores do genótipo Met/Met rs4680/rs165599 do COMT apresentam comprometimento cognitivo mais grave (função executiva, fluência verbal, memória e inteligência) comparado ao genótipo Val/Met ou Val/Val durante episódios maníacos ou mistos. Na mesma direção destes resultados, verificou-se que pacientes portadores do alelo Met rs4680 do COMT apresentam comprometimento do reconhecimento de emoções faciais em episódios de mania e depressão. Nenhum efeito do COMT foi observado em controles. O alelo de risco Met do CACNA1C se associou a um pior comprometimento executivo independente dos sintomas maníacos ou depressivos no TB, porém nenhum efeito se observou nos controles. O alelo Met do BDNF rs6265 ou a presença do alelo 4 da APOE não representa um fator que identifique um grupo com desempenho cognitivo diferenciado durante as fases do TB ou em controles. Sujeitos com TB apresentaram níveis mais elevados de 8-OHdG e tais níveis eram diretamente proporcionais ao número de episódios maníacos ao longo da vida, sugerindo um papel dos episódios hiperdopaminérgicos na oxidação das bases de DNA. Concluiu-se que a genotipagem para COMT e CACNA1C em pacientes com TB pode identificar um grupo de pacientes associados a pior disfunção cognitiva durante as fases maníacas e mistas do TB. Tal dado pode ser um indicador do envolvimento do sistema dopaminérgico e dos canais de cálcio de baixa voltagem na fisiopatologia da disfunção cognitiva no TB e deve ser explorado em outros estudos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The investigation of biologically initiated pathways to psychological disorder is critical to advance our understanding of mental illness. Research has suggested that attention bias to emotion may be an intermediate trait for depression associated with biologically plausible candidate genes, such as the serotonin transporter (5-HTTLPR) and catechol-o-methyl-transferase (COMT) genes, yet there have been mixed findings in regards to the precise direction of effects. The experience of recent stressful life events (SLEs) may be an important, yet currently unstudied, moderator of the relationship between genes and attention bias as SLEs have been associated with both gene expression and attention to emotion. Additionally, although attention biases to emotion have been studied as a possible intermediate trait associated with depression, no study has examined whether attention biases within the context of measured genetic risk lead to increased risk for clinical depressive episodes over time. Therefore, this research investigated both whether SLEs moderate the link between genetic risk (5-HTTLPR and COMT) and attention bias to emotion and whether 5-HTTLPR and COMT moderated the relationship between attention biases to emotional faces and clinical depression onset prospectively across 18 months within a large community sample of youth (n= 467). Analyses revealed a differential effect of gene. Youth who were homozygous for the low expressing allele of 5-HTTLPR (S/S) and had experienced more recent SLEs within the last three months demonstrated preferential attention toward negative emotional faces (angry and sad). However, youth who were homozygous for the high expressing COMT genotype (Val/Val) and had experienced more recent SLEs showed attentional avoidance of positive facial expressions (happy). Additionally, youth who avoided negative emotion (i.e., anger) and were homozygous for the S allele of the 5-HTTLPR gene were at greater risk for prospective depressive episode onset. Increased risk for depression onset was specific to the 5-HTTLPR gene and was not found when examining moderation by COMT. These findings highlight the importance of examining risk for depression across multiple levels of analysis, such as combined genetic, environmental, and cognitive risk, and is the first study to demonstrate clear evidence of attention biases to emotion functioning as an intermediate trait predicting depression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To review the policy and ethical implications of recent research on the molecular genetics of attention deficit hyperactivity disorder (ADHD). Method: MEDLINE and psycINFO database searches were used to identify studies on the genetics of ADHD. The implications of replicated candidate genes are discussed. Results: The findings for most genes have been inconsistent but several studies have implicated the genes in the dopaminergic pathway in the aetiology of ADHD. Conclusions: The current evidence on the genetics of ADHD is insufficient to justify genetic screening tests but it will provide important clues as to the aetiology of ADHD. Genetic information on susceptibility to ADHD has the potential to be abused and to stigmatize individuals. Researchers and clinicians need to be mindful of these issues in interpreting and disseminating the results of genetic studies of ADHD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis of the existence of one or more schizophrenia susceptibility loci on chromosome 22q is supported by reports of genetic linkage and association, meta-analyses of linkage, and the observation of elevated risk for psychosis in people with velocardiofacial syndrome, caused by 22q11 microdeletions. We tested this hypothesis by evaluating 10 microsatellite markers spanning 22q in a multicenter sample of 779 pedigrees. We also incorporated age at onset and sex into the analysis as covariates. No significant evidence for linkage to schizophrenia or for linkage associated with earlier age at onset, gender, or heterogeneity across sites was observed. We interpret these findings to mean that the population-wide effects of putative 22q schizophrenia susceptibility loci are too weak to detect with linkage analysis even in large samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The safe clinical use of phenytoin (PHT) is compromised by a drug hypersensitivity reaction, hypothesized to be due to bioactivation of the drug to a protein-reactive metabolite. Previous studies have shown PHT is metabolized to the primary phenol metabolite, HPPH, then converted to a catechol which then autoxidizes to produce reactive quinone. PHT is known to be metabolized to HPPH by cytochromes P450 (P450s) 2C9 and 2C19 and then to the catechol by P450s 2C9, 2C19, 3A4, 3A5, and 3A7. However, the role of many poorly expressed or extrahepatic P450s in the metabolism and/or bioactivation of PHT is not known. The aim of this study was to assess the ability of other human P450s to catalyze PHT metabolism. P450 2C18 catalyzed the primary hydroxylation of PHT with a k(cat) (2.46 +/- 0.09 min(-1)) more than an order of magnitude higher than that of P450 2C9 (0.051 +/- 0.004 min(-1)) and P450 2C19 (0.054 +/- 0.002 min(-1)) and K-m (45 +/- 5 mu M) slightly greater than those of P450 2C9 (12 +/- 4 mu M) and P450 2C19 (29 +/- 4 mu M). P450 2C18 also efficiently catalyzed the secondary hydroxylation of PHT as well as covalent drug-protein adduct formation from both PHT and HPPH in vitro. While P450 2C18 is expressed poorly in the liver, significant expression has been reported in the skin. Thus, P450 2C18 may be important for the extrahepatic tissue-specific bioactivation of PHT in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty strains of Flavobacterium psychrophilum were tested for the production of siderophores using the universal Chrome Azurol S (CAS) assay. The majority of the strains (85%) were CAS positive (CAS+) and some (15%) were CAS negative (CAS−). The cryptic plasmid pCP1 was carried by all positive strains and was lacking from negative strains. While a weak catechol reaction was detectable in CAS+ culture supernatants, the CAS reaction was, to some extent, heat sensitive, questioning whether the positive reaction was caused only by siderophores. The ability to grow in vitro under iron-restricted conditions did not correlate with the CAS reactivity, as growth of both CAS+ and CAS− strains was similarly impaired under iron restriction induced by 2,2 dipyridyl. Suppressed growth under these conditions was restored by addition of FeCl3, haemoglobin and transferrin for both CAS+ and CAS− strains.