911 resultados para Building blocks in elastomer composite fabrication


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of porous blocks containing three different reactive magnesia-based cements - namely magnesia alone, magnesium oxide: Portland cement (PC) in 1:1 ratio, cured in ambient conditions, and magnesia alone, cured at elevated carbon dioxide conditions, in hydrochloric acid and magnesium sulfate solution - was investigated. Different aggressive chemical solution conditions were used, to which the samples were exposed for up to 12 months and then tested for strength and microstructure. The performance was also compared with that of standard PC-based blocks. The results showed the significant resistance to chemical attack offered by magnesia, both alone and with PC blend in the porous blocks when cured under ambient carbon dioxide conditions, and confirmed the much poorer performance of blocks made from PC alone. The blocks of solely magnesia cured in elevated carbon dioxide conditions, at 20% concentration, showed slightly lower resistance to acid attack than PC; however, the resistance to sulfate attack was much higher. © 2012 Thomas Telford Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the elastomer stiffness on brittle-tough transition in elastomer toughening thermoplastics was quantitatively studied. A correlation between brittle-tough transition temperature and the elastomer stiffness was obtained. The calculation from this correlation showed that the brittle-tough transition temperature (T-bt) Of elastomer toughening thermoplastics slowly increased up to one tenth of the modulus of matrix, thereafter it increased rapidly with increasing the modulus of elastomer. The results indicated that the modulus of the elastomer must be one-tenth or less of that of the matrix in order to be effective at low temperature. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase behavior, thermal, theological and mechanical properties plus morphology have been studied for a binary polymer blend. The blend is phenolphthalein polyethersulfone (PES-C) with a thermotropic liquid crystalline polymer (LCP), a condensation copolymer of p-hydroxybenzoic acid with ethylene terephthalate (PHB-PET). It was found that these two polymers form optically isotropic and homogeneous blends by means of a solvent casting method. The homogeneous blends undergo phase separation during heat treatment. However, melt mixed PES-C/PHB-PET blends were heterogeneous based upon DSC and DMA analysis and SEM examination. Addition of LCP in PES-C resulted in a marked reduction of melt viscosity and thus improved processability. Compared to pure PES-C, the charpy impact strength of the blend containing 2.5% LCP increased 2.5 times. Synergistic effects were also observed for the mechanical properties of blends containing < 10% LCP. Particulates, ribbons, and fibrils were found to be the typical morphological units of PHB-PET in the PES-C matrix, which depended upon the concentration of LCP and the processing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have attracted attention for their remarkable electrical properties and have being explored as one of the best building blocks in nano-electronics. A key challenge to realize such potential is the control of the nanotube growth directions. Even though both vertical growth and controlled horizontal growth of carbon nanotubes have been realized before, the growth of complex nanotube structures with both vertical and horizontal orientation control on the same substrate has never been achieved. Here, we report a method to grow three-dimensional (3D) complex nanotube structures made of vertical nanotube forests and horizontal nanotube arrays on a single substrate and from the same catalyst pattern by an orthogonally directed nanotube growth method using chemical vapor deposition (CVD). More importantly, such a capability represents a major advance in controlled growth of carbon nanotubes. It enables researchers to control the growth directions of nanotubes by simply changing the reaction conditions. The high degree of control represented in these experiments will surely make the fabrication of complex nanotube devices a possibility.