871 resultados para Biomedical imaging and visualization
Resumo:
PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.
Resumo:
BACKGROUND: The pathology of restless legs syndrome (RLS) is still not understood. To investigate the pathomechanism of the disorder further we recorded a surface electromyogram (EMG) of the anterior tibial muscle during functional magnetic resonance imaging (fMRI) in patients with idiopathic RLS. METHODS: Seven subjects with moderate to severe RLS were investigated in the present pilot study. Patients were lying supine in the scanner for over 50min and were instructed not to move voluntarily. Sensory leg discomfort (SLD) was evaluated on a 10-point Likert scale. For brain image analysis, an algorithm for the calculation of tonic EMG values was developed. RESULTS: We found a negative correlation of tonic EMG and SLD (p <0.01). This finding provides evidence for the clinical experience that RLS-related subjective leg discomfort increases during muscle relaxation at rest. In the fMRI analysis, the tonic EMG was associated with activation in motor and somatosensory pathways and also in some regions that are not primarily related to motor or somatosensory functions. CONCLUSIONS: By using a newly developed algorithm for the investigation of muscle tone-related changes in cerebral activity, we identified structures that are potentially involved in RLS pathology. Our method, with some modification, may also be suitable for the investigation of phasic muscle activity that occurs during periodic leg movements.
Resumo:
Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms.
Resumo:
CONTEXT: Magnetic resonance imaging (MRI) combined with magnetic resonance spectroscopy imaging (MRSI) emerged as a promising test in the diagnosis of prostate cancer and showed encouraging results. OBJECTIVE: The aim of this systematic review is to meta-analyse the diagnostic accuracy of combined MRI/MRSI in prostate cancer and to explore risk profiles with highest benefit. EVIDENCE ACQUISITION: The authors searched the MEDLINE and EMBASE databases and the Cochrane Library, and the authors screened reference lists and contacted experts. There were no language restrictions. The last search was performed in August 2008. EVIDENCE SYNTHESIS: We identified 31 test-accuracy studies (1765 patients); 16 studies (17 populations) with a total of 581 patients were suitable for meta-analysis. Nine combined MRI/MRSI studies (10 populations) examining men with pathologically confirmed prostate cancer (297 patients; 1518 specimens) had a pooled sensitivity and specificity on prostate subpart level of 68% (95% CI, 56-78%) and 85% (95% CI, 78-90%), respectively. Compared with patients at high risk for clinically relevant cancer (six studies), sensitivity was lower in low-risk patients (four studies) (58% [46-69%] vs 74% [58-85%]; p>0.05) but higher for specificity (91% [86-94%] vs 78% [70-84%]; p<0.01). Seven studies examining patients with suspected prostate cancer at combined MRI/MRSI (284 patients) had an overall pooled sensitivity and specificity on patients level of 82% (59-94%) and 88% (80-95%). In the low-risk group (five studies) these values were 75% (39-93%) and 91% (77-97%), respectively. CONCLUSIONS: A limited number of small studies suggest that MRI combined with MRSI could be a rule-in test for low-risk patients. This finding needs further confirmation in larger studies and cost-effectiveness needs to be established.
Resumo:
A young, intact, male Bernese Mountain Dog was presented to the animal hospital for lameness and diffuse thickening of the soft tissue in the right hind limb. Magnetic resonance imaging revealed multiple, multilobular, space-occupying lesions within and between the muscles of the right femur. Biopsies taken from the lesions revealed an infiltrative mass composed mainly of collagen fibers and a low density of benign-appearing fibroblasts. These findings were compatible with a diagnosis of a fibromatosis. Taking the age of onset into account, infantile fibromatosis was most likely. A deep fibromatosis, similar to that seen in adults, could not be excluded based on histology.
Resumo:
Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.