980 resultados para Biomass, dry mass, standard deviation
Resumo:
The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the spatial stability of soil microbial properties were taken on the 20th of September in 2010. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/ h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.
Analysis of temporal microbial properties from experimental plots of the Jena experiment (2003-2014)
Resumo:
The study was carried out on the main plots (Main Experiment) of a large grassland biodiversity experiment, the Jena Experiment. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. This data set consists of standard deviation (SD), mean and stability (stab) of soil microbial basal respiration (µl O2/h/g dry soil) and microbial biomass carbon (µg C/g dry soil). Data were derived by taking soil samples and measuring basal and substrate-induced microbial respiration with an oxygen-consumption apparatus. Samples for calculating the temporal stability were taken every year in May/June from 2003 to 2014, except in 2005. Oxygen consumption of soil microorganisms in fresh soil equivalent to 3.5 g dry weight was measured at 22°C over a period of 24 h. Basal respiration (µlO2/g dry soil/h) was calculated as mean of the oxygen consumption rates of hours 14 to 24 after the start of measurements. Substrate- induced respiration was determined by adding D-glucose to saturate catabolic enzymes of microorganisms according to preliminary studies (4 mg g-1 dry soil solved in 400 µl deionized water). Maximum initial respiratory response (µl O2/g dry soil/h) was calculated as mean of the lowest three oxygen consumption values within the first 10 h after glucose addition. Microbial biomass carbon (µg C/g dry soil) was calculated as 38 × Maximum initial respiratory response according to prelimiray studies.
Resumo:
Knowledge of the uncertainty of measurement of testing results is important when results have to be compared with limits and specifications. In the measurement of sound insulation following standards UNE EN ISO 140-4 the uncertainty of the final magnitude is mainly associated to the average sound pressure levels L1 and L2 measured. A parameter that allows us to quantify the spatial variation of the sound pressure level is the standard deviation of the pressure levels measured at different points of the room. In this work, for a wide number of measurements following standards UNE EN ISO 140-4 we analyzed qualitatively the behaviour of the standard deviation for L1 and L2. The study of sound fields in enclosed spaces is very difficult. There are a wide variety of rooms with different sound fields depending on factors as volume, geometry and materials. In general, we observe that the L1 and L2 standard deviations contain peaks and dips independent on characteristics of the rooms at single frequencies that could correspond to critical frequencies of walls, floors and windows or even to temporal alterations of the sound field. Also, in most measurements according to UNE EN ISO 140-4 a large similitude between L1 and L2 standard deviation is found. We believe that such result points to a coupled system between source and receiving rooms, mainly at low frequencies the shape of the L1 and L2 standard deviations is comparable to the velocity level standard deviation on a wall
Resumo:
Results of measurements of Cs-137 and Co-60 concentrations in bottom sediments of the Northwestern Black Sea indicate inhomogenity of their distribution both over the studied area and along sediment cores. Intermittency of sediment layers with different concentration of radionuclides in the cores reflects active horizontal movements and redistribution of sediments on the shelf and continental slope. As a result sediment layers dated by the Chernobyl mark as seven years old were found in the 5-7 cm depth layer. Maximum Cs-137 concentration in the surface sedimentary layer on the shelf was 42 mBq/g. Maximum Co-60 concentration of 1320 mBq/g was measured due to a hot particle. No correlation was found between Cs-137 and the Co-60 contents.
Resumo:
Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.