980 resultados para Biological contraol


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Ambiente

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this review is to provide a descriptive analysis of the biological and physiological markers of tactile sensorial processing in healthy, full-term newborns. Research articles were selected according to the following study design criteria: (a) tactile stimulation for touch sense as an independent variable; (b) having at least one biological or physiological variable as a dependent variable; and (c) the group of participants were characterized as full-term and healthy newborns; a mixed group of full-term newborns and preterm newborns; or premature newborns with appropriate-weight-for-gestational age and without clinical differences or considered to have a normal, healthy somatosensory system. Studies were then grouped according to the dependent variable type, and only those that met the aforementioned three major criteria were described. Cortisol level, growth measures, and urinary catecholamine, serotonin, and melatonin levels were reported as biological-marker candidates for tactile sensorial processing. Heart rate, body temperature, skin-conductance activity, and vagal reactivity were described as neurovegetative-marker candidates. Somatosensory evoked potentials, somatosensory evoked magnetic fields, and functional neuroimaging data also were included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry, Engineering and Technological Sciences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clonal structure of the Colombian strain of Trypanosoma cruzi, biodeme Type III and zymodeme 1, was analyzed in order to characterize its populations and to establish its homogeneity or heterogeneity. Seven isolated clones presented the basic characteristics of Biodeme Type III, with the same patterns of parasitemic curves, tissue tropism to skeletal muscle and myocardium, high pathogenicity with extensive necrotic-inflammatory lesions from the 20th to 30th day of infection. The parental strain and its clones C1, C3, C4 and C6, determined the higher levels of parasitemia, 20 to 30 days of infection, with high mortality rate up to 30 days (79 to 100%); clones C2, C5 and C7 presented lower levels of parasitemia, with low mortality rates (7.6 to 23%). Isoenzymic patterns, characteristic of zymodeme 1, (Z1) were similar for the parental strain and its seven clones. Results point to a phenotypic homogeneity of the clones isolated from the Colombian strain and suggest the predominance of a principal clone, responsible for the biological behavior of the parental strain and clones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Chemical and Biochemical Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Review article Martins, P., Marques, M., Coito, L., Pombeiro, A.J.L., Baptista, P.V., Fernandes, A.R. 2014. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-cancer Agents in Medicinal Chemistry 14. PMID: 25173559

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric particulate-systems are of great relevance due to their possible biomedical applications, among them as carriers for the nano- or microencapsulation of drugs. However, due to their unique specific properties, namely small size range, toxicity issues must be discarded before allowing its use on health-related applications. Several polymers, as poly(methyl methacrylate) (PMMA), have proved to be suitable for the preparation of particulate-systems. However, a major drawback of its use refers to incomplete drug release from particles matrix. Recent strategies to improve PMMA release properties mention the inclusion of other acrylic polymers as Eudragit (EUD) on particles formulation. Though PMMA and EUD are accepted by the FDA as biocompatible, their safety on particle composition lacks sufficient toxicological data. The main objective of this thesis was to evaluate the biological effects of engineered acrylic particulate-systems. Preparation, physicochemical characterization and in vitro toxicity evaluation were assessed on PMMA and PMMA-EUD (50:50) particles. The emulsification-solvent evaporation methodology allowed the preparation of particles with spherical and smooth surfaces within the micrometer range (±500 nm), opposing surface charges and different levels of hydrophobicity. It was observed that particles physicochemical properties (size and charge) were influenced by biological media composition, such as serum concentration, ionic strength or pH. In what concerns to the in vitro toxicological studies, particle cellular uptake was observed on different cell lines (macrophages, osteoblasts and fibroblasts). Cytotoxicity effects were only found after 72 h of cells exposure to the particles, while no oxidative damage was observed neither on osteoblasts nor fibroblasts. Also, no genotoxicity was found in fibroblast using the comet assay to assess DNA damage. This observation should be further confirmed with other validated genotoxicity assays (e.g. Micronucleus Assay). The present study suggests that the evaluated acrylic particles are biocompatible, showing promising biological properties for potential use as carriers in drug-delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic Liquids (ILs) belong to a class of compounds with unusual properties: very low vapour pressure; high chemical and thermal stability and the ability to dissolve a wide range of substances. A new field in research is evaluating the possibility to use natural chiral biomolecules for the preparation of chiral ionic liquids (CILs). This important challenge in synthetic chemistry can open new avenues of research in order to avoid some problems related with the intrinsic biodegradability and toxicity associated to conventional ILs. The research work developed aimed for the synthesis of CILs, their characterization and possible applications, based on biological moieties used either as chiral cations or anions, depending on the synthetic manipulation of the derivatives. Overall, a total of 28 organic salts, including CILs were synthesized: 9 based on L-cysteine derivatives, 12 based on L-proline, 3 based on nucleosides and 4 based on nucleotides. All these new CILs were completely characterized and their chemical and physical properties were evaluated. Some CILs based on L-cysteine have been applied for discrimination processes, including resolution of racemates and as a chiral catalyst for asymmetric Aldol condensation. L-proline derived CILs were also studied as chiral catalysts for Michael reaction. In parallel, the interactions of macrocyclic oligosugars called cyclodextrins (CDs) with several ILs were studied. It was possible to improve the solubility of CDs in water and serum. Additionally, fatty acids and steroids showed an increase in water solubility when ILs-CDs systems were used. The development of efficient and selective ILs-CDs systems is indispensable to expand the range of their applications in host-guest interactions, drug delivery systems or catalytic reactions. Novel salts derived from nucleobases were used in order to enhance the fluorescence in aqueous solution. Additionally, preliminary studies regarding ethyl lactate as an alternative solvent for asymmetric organocatalysis were performed.