992 resultados para Band Formation
Resumo:
The removal of arsenate anions from aqueous media, sediments and wasted soils is of environmental significance. The reaction of gypsum with the arsenate anion results in pharmacolite mineral formation, together with related minerals. Raman and infrared spectroscopy have been used to study the mineral pharmacolite Ca(HAsO4)•2H2O. The mineral is characterised by an intense Raman band at 865 cm-1 assigned to the (AsO4)3- symmetric stretching mode. The equivalent infrared band is found at 864 cm-1. The low intensity Raman band at 886 cm-1 provides evidence for (AsO3OH)2-. A series of overlapping bands in the 300 to 450 cm-1 are attributed to ν2 and ν4 bending modes. Prominent Raman bands at around 3187 cm-1 are assigned to water OH stretching vibrations and the two sharp bands at 3425 and 3526 cm-1 to the OH stretching vibrations of (HOAsO3) units.
Resumo:
Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.
Resumo:
Purpose–The aims of this paper are to demonstrate the application of Sen’s theory of well-being, the capability approach; to conceptualise the state of transportation disadvantage; and to underpin a theoretical sounds indicator selection process. Design/methodology/approach–This paper reviews and examines various measurement approaches of transportation disadvantage in order to select indicators and develop an innovative framework of urban transportation disadvantage. Originality/value–The paper provides further understanding of the state of transportation disadvantage from the capability approach perspective. In addition, building from this understanding, a validated and systematic framework is developed to select relevant indicators. Practical implications –The multi-indicator approach has a high tendency to double count for transportation disadvantage, increase the number of TDA population and only accounts each indicator for its individual effects. Instead, indicators that are identified based on a transportation disadvantage scenario will yield more accurate results. Keywords – transport disadvantage, the capability approach, accessibility, measuring urban transportation disadvantage, indicators selection Paper type – Academic Research Paper
Resumo:
The effect of bentonite micro-particles and cationic polyacrylamide (CPAM) on the filtration properties of bagasse pulp was investigated under shearing conditions. CPAM improves retention but the bentonite addition level must be optimised for further improvements in retention. A Dynamic Drainage Jar (‘Britt Jar’) was modified to allow bagasse pulp slurry to be subjected to vacuum allowing a thin pulp pad to be formed. Bagasse pulp which had had the majority of the fine fibre removed prior to pulping drained more quickly than a conventional bagasse pulp when vacuum was not applied, however this situation was reversed when vacuum was used. The flocculants continue to improve fibre retention under vacuum and shear conditions but with reduced effectiveness.
Resumo:
The workplace is evolving and the predicted impact of demographic changes (Salt, 2009; Taylor, 2005) has seen organisations focus on strategic workforce planning. As part of this, many organisations have established or expanded formalised graduate programs to attract graduates and transition them effectively into organisations (McDermott, Mangan, & O'Connor, 2005; Terjesen, Freeman, & Vinnicombe, 2007). The workplace context is also argued to be changing because of the divergence in preferences and priorities across the different generations in the workplace - a topic which is prolific in the popular culture media but is yet to be fully developed in the academic literature (Jorgenson, 2003). The public sector recruits large numbers of graduates and maintains well established graduate programs. Like the workplace context, the public sector is seen to be undergoing a transition to more closely align its practices and processes with that of the private sector (Haynes & Melville Jones, 1999; N. Preston, 1995). Consequently, questions have been raised as to how new workforce entrants see the public sector and its associated attractiveness as an employment option. This research draws together these issues and reviews the formation of, and change in, the psychological contracts of graduates across ten Queensland public sector graduate programs. To understand the employment relationship, the theories of psychological contract and public service motivation are utilised. Specifically, this research focuses on graduates' and managers' expectations over time, the organisational perspective of the employment relationship and how ideology influences graduates' psychological contract. A longitudinal mixed method design, involving individual interviews and surveys, is employed along with significant researcher-practitioner collaboration throughout the research process. A number of important qualitative and quantitative findings arose from this study and there was strong triangulation between results from the two methods. Prior to starting with the organisation, graduates found it difficult to articulate their expectations; however, organisational experience rapidly brought these to the fore. Of the expectations that became salient, most centred on their relationship with their supervisor. Without experience and quality information on which to base their expectations, graduates tended to over-rely on sectoral stereotypes which negatively impacted their psychological contracts. Socialisation only limited affected graduates' psychological contracts and public service motivation. The graduate survey, measured thrice throughout the first 12 months of the graduate program, revealed that the psychological contract and public service motivation results followed a similar trajectory of beginning at mediocre levels, declining between times one and two and increasing between times two and three (although this is not back to original levels). Graduates attributed these to a number of sectoral, organisational, team, supervisory and individual factors. On a theoretical level, this research provides support for the notion of ideology within the psychological contract although it raises some important questions about how it is conceptualised. Additionally, support is given for the manager to be seen as the primary organisational counterpart to the employee in future theoretical and practical work. The research also argues to extend current notions of time within the psychological contract as this seems to be the most divergent and combustible issue across the generations in terms of how the workplace is perceived. A number of practical implications also transpire from the study and the collaborative foundation was highly successful. It is anticipated that this research will make a meaningful contribution to both the theory and practice of the employment relationship with particular regard to graduates entering the public sector.
Resumo:
Engineering graduates of today are required to adapt to a rapidly changing work environment. In particular, they are expected to demonstrate enhanced capabilities in both mono-disciplinary and multi-disciplinary teamwork environments. Engineering education needs, as a result, to further focus on developing group work capabilities amongst engineering graduates. Over the last two years, the authors trialed various group work strategies across two engineering disciplines. In particular, the effect of group formation on students' performance, task management, and social loafing was analyzed. A recently developed online teamwork management tool, Teamworker, was used to collect students' experience of the group work. Analysis showed that students who were allowed to freely allocate to any group were less likely to report loafing from other team members, than students who were pre-allocated to a group. It also showed that performance was more affected by the presence or absence of a leader in pre-allocated rather than free-allocated groups.
Resumo:
In this paper, two ideal formation models of serrated chips, the symmetric formation model and the unilateral right-angle formation model, have been established for the first time. Based on the ideal models and related adiabatic shear theory of serrated chip formation, the theoretical relationship among average tooth pitch, average tooth height and chip thickness are obtained. Further, the theoretical relation of the passivation coefficient of chip's sawtooth and the chip thickness compression ratio is deduced as well. The comparison between these theoretical prediction curves and experimental data shows good agreement, which well validates the robustness of the ideal chip formation models and the correctness of the theoretical deducing analysis. The proposed ideal models may have provided a simple but effective theoretical basis for succeeding research on serrated chip morphology. Finally, the influences of most principal cutting factors on serrated chip formation are discussed on the basis of a series of finite element simulation results for practical advices of controlling serrated chips in engineering application.
Resumo:
Early this year the Australian Department of Environment and Heritage commissioned a desktop literature review with a focus on ultrafine particles including analysis of health impacts of the particles as well as the impact of sulphur content of diesel fuel on ultrafine particle emission. This paper summarizes the findings of the report on the link between the sulphur content of diesel fuels and the number of ultrafine particles in diesel emissions. The literature search on this topic resulted in over 150 publications. The majority of these publications, although investigating different aspects of the influence of fuel sulphur level on diesel vehicle emissions, were not directly concerned with ultrafine particle emissions. A specific focus of the paper is on: ----- ----- summary of state of knowledge established by the review, and ----- ----- summary of recommendations on the research priorities for Australia to address the information gaps for this issue, and on the appropriate management responses.
Resumo:
Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.
Resumo:
The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.
Resumo:
Objectives: The periosteum plays an indispensable role in both bone formation and bone defect healing. The aim of this project is to produce tissue engineered periosteum for bone defect treatment. Methods: In this study we constructed an artificial in vitro periosteum by incorporating osteogenic differentiated bone marrow stromal cells (BMSCs) and cobalt chloride (CoCl2)-treated BMSCs. The engineered periostea were implanted both subcutaneously and into skull bone defects in SCID mice to investigate ectopic and orthotopic osteogenesis and vascularisation. After two weeks in subcutaneous and four weeks in bone defect areas, the implanted constructs were assessed for ectopic and orthotopic osteogenesis and vascularisation by micro-CT, histomorphometrical and immunohistochemical methods. Results: The results showed that CoCl2 pre-treated BMSCs induced higher degree of vascularisation and enhanced osteogenesis within the implants in both ectopic and orthotopic areas. Conclusion: This study provided a novel approach using BMSCs sourced from the same patient for both osteogenic and pro-angiogenic purposes in constructing tissue engineered periosteum to enhance vascularized osteogenesis.
Resumo:
This paper presents the findings of a research project that was set up to establish haw well Gibber, a street magazine set up in Perth in 1994, effectively provides a 'voice' for its canstituency -'young people marginalised by society'.
Resumo:
The seawater neutralisation process is currently used in the Alumina industry to reduce the pH and dissolved metal concentrations in bauxite refinery residues, through the precipitation of Mg, Al, and Ca hydroxide and carbonate minerals. This neutralisation method is very similar to the co-precipitation method used to synthesise hydrotalcite (Mg6Al2(OH)16CO3•4H2O). This study looks at the effect of temperature on the type of precipitates that form from the seawater neutralisation process of Bayer liquor. The Bayer precipitates have been characterised by a variety of techniques, including X-ray diffraction, Raman spectroscopy and infrared spectroscopy. The mineralogical composition of Bayer precipitates largely includes hydrotalcite, hydromagnesite, and calcium carbonate species. XRD determined that Bayer hydrotalcites that are synthesised at 55 °C have a larger interlayer distance, indicating more anions are removed from Bayer liquor. Vibrational spectroscopic techniques have identified an increase in hydrogen bond strength for precipitates formed at 55 °C, suggesting the formation of a more stable Bayer hydrotalcite. Raman spectroscopy identified the intercalation of sulfate and carbonate anions into Bayer hydrotalcites using these synthesis conditions.