988 resultados para Automatic mesh generation
Resumo:
Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
A long-standing debate in the literature is whether attention can form two or more independent spatial foci in addition to the well-known unique spatial focus. There is evidence that voluntary visual attention divides in space. The possibility that this also occurs for automatic visual attention was investigated here. Thirty-six female volunteers were tested. In each trial, a prime stimulus was presented in the left or right visual hemifield. This stimulus was characterized by the blinking of a superior, middle or inferior ring, the blinking of all these rings, or the blinking of the superior and inferior rings. A target stimulus to which the volunteer should respond with the same side hand or a target stimulus to which she should not respond was presented 100 ms later in a primed location, a location between two primed locations or a location in the contralateral hemifield. Reaction time to the positive target stimulus in a primed location was consistently shorter than reaction time in the horizontally corresponding contralateral location. This attentional effect was significantly smaller or absent when the positive target stimulus appeared in the middle location after the double prime stimulus. These results suggest that automatic visual attention can focus on two separate locations simultaneously, to some extent sparing the region in between.
Resumo:
PURPOSE: To evaluate an experimental animal model to study the abdominal tissue activity considering its interaction with a polypropylene mesh, through the use of one of the optical phenomena of light Laser, the biospeckle. METHODS: Fifty Wistar male rats were divided into four groups: Group 1: ten animals not submitted to surgery; Group 2: ten animals submitted to surgery without polypropylene mesh; Group 3: 20 animals submitted to surgery followed by the mesh placement; Group 4: (sham) with ten animals. None of the animals presented post surgical complications being submitted to the optical tests at the 20th postoperative day. RESULTS: The analysis from the biospeckle tests, comparing the medians and standard deviations with T Student test, indicated that no significative difference was observed on the abdominal wall tissue activity in the four groups considered, with and without polypropylene mesh prosthesis implantation. CONCLUSION: The animal model is viable and the biospeckle open ways for a great number of experiments to be developed in evaluating tissue activity.
Resumo:
The Lattes platform is the major scientific information system maintained by the National Council for Scientific and Technological Development (CNPq). This platform allows to manage the curricular information of researchers and institutions working in Brazil based on the so called Lattes Curriculum. However, the public information is individually available for each researcher, not providing the automatic creation of reports of several scientific productions for research groups. It is thus difficult to extract and to summarize useful knowledge for medium to large size groups of researchers. This paper describes the design, implementation and experiences with scriptLattes: an open-source system to create academic reports of groups based on curricula of the Lattes Database. The scriptLattes system is composed by the following modules: (a) data selection, (b) data preprocessing, (c) redundancy treatment, (d) collaboration graph generation among group members, (e) research map generation based on geographical information, and (f) automatic report creation of bibliographical, technical and artistic production, and academic supervisions. The system has been extensively tested for a large variety of research groups of Brazilian institutions, and the generated reports have shown an alternative to easily extract knowledge from data in the context of Lattes platform. The source code, usage instructions and examples are available at http://scriptlattes.sourceforge.net/.
Resumo:
The transmetalation between boron and zinc is of great importance for application in organic synthesis, since it allows the formation of new carbon-carbon bonds between organometallic units and electrophiles. The direct arylation of aldehydes or more scarcely ketones, in a catalytic, enantioselective manner using chiral catalysts has been described recently. The enantiomerically enriched diarylmethanols obtained in these reactions are valuable precursors for important bioactive molecules. This review provides a synopsis of this ever-growing field and highlights some of the challenges that still remain.
Resumo:
Due to both the widespread and multipurpose use of document images and the current availability of a high number of document images repositories, robust information retrieval mechanisms and systems have been increasingly demanded. This paper presents an approach to support the automatic generation of relationships among document images by exploiting Latent Semantic Indexing (LSI) and Optical Character Recognition (OCR). We developed the LinkDI (Linking of Document Images) service, which extracts and indexes document images content, computes its latent semantics, and defines relationships among images as hyperlinks. LinkDI was experimented with document images repositories, and its performance was evaluated by comparing the quality of the relationships created among textual documents as well as among their respective document images. Considering those same document images, we ran further experiments in order to compare the performance of LinkDI when it exploits or not the LSI technique. Experimental results showed that LSI can mitigate the effects of usual OCR misrecognition, which reinforces the feasibility of LinkDI relating OCR output with high degradation.
Resumo:
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]
Resumo:
In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.
Resumo:
We study extensions of the standard model with a strongly coupled fourth generation. This occurs in models where electroweak symmetry breaking is triggered by the condensation of at least some of the fourth-generation fermions. With focus on the phenomenology at the LHC, we study the pair production of fourth-generation down quarks, D(4). We consider the typical masses that could be associated with a strongly coupled fermion sector, in the range (300-600) GeV. We show that the production and successive decay of these heavy quarks into final states with same-sign dileptons, trileptons, and four leptons can be easily seen above background with relatively low luminosity. On the other hand, in order to confirm the presence of a new strong interaction responsible for fourth-generation condensation, we study its contribution to D(4) pair production, and the potential to separate it from standard QCD-induced heavy quark production. We show that this separation might require large amounts of data. This is true even if it is assumed that the new interaction is mediated by a massive colored vector boson, since its strong coupling to the fourth generation renders its width of the order of its mass. We conclude that, although this class of models can be falsified at early stages of the LHC running, its confirmation would require high integrated luminosities.
Resumo:
The magnetic europium chalcogenide semiconductors EuTe and EuSe are investigated by the spectroscopy of second harmonic generation (SHG) in the vicinity of the optical band gap formed by transitions involving the 4f and 5d electronic orbitals of the magnetic Eu(2+) ions. In these materials with centrosymmetric crystal lattice the electric-dipole SHG process is symmetry forbidden so that no signal is observed in zero magnetic field. Signal appears, however, in applied magnetic field with the SHG intensity being proportional to the square of magnetization. The magnetic field and temperature dependencies of the induced SHG allow us to introduce a type of nonlinear optical susceptibility determined by the magnetic-dipole contribution in combination with a spontaneous or induced magnetization. The experimental results can be described qualitatively by a phenomenological model based on a symmetry analysis and are in good quantitative agreement with microscopic model calculations accounting for details of the electronic energy and spin structure.
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.
Resumo:
Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.