217 resultados para Austenitic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heterogeneous deformation developed during "static recrystallization (SRX) tests" poses serious questions about the validity of the conventional methods to measure softening fraction. The challenges to measure SRX and verify a proposed kinetic model of SRX are discussed and a least square technique is utilized to quantify the error in a proposed SRX kinetic model. This technique relies on an existing computational-experimental multi-layer formulation to account for the heterogeneity during the post interruption hot torsion deformation. The kinetics of static recrystallization for a type 304 austenitic stainless steel deformed at 900 °C and strain rate of 0.01s-1 is characterized implementing the formulation. Minimizing the error between the measured and calculated torque-twist data, the parameters of the kinetic model and the flow behavior during the second hit are evaluated and compared with those obtained based on a conventional technique. Typical static recrystallization distributions in the test sample will be presented. It has been found that the major differences between the conventional and the presented technique results are due to the heterogeneous recrystallization in the cylindrical core of the specimen where the material is still partially recrystallized at the onset of the second hit deformation. For the investigated experimental conditions, the core is confined in the first two-thirds of the gauge radius, when the holding time is shorter than 50 s and the maximum pre-strain is about 0.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 Published by Elsevier Ltd. All rights reserved. Accurate static recrystallization (SRX) models are necessary to improve the properties of austenitic steels by thermo-mechanical operations. This relies heavily on a careful and accurate analysis of "the interrupted test data" and conversion of the heterogeneous deformation data to the flow stress. A "computational-experimental inverse method" was presented and implemented here to analyze the SRX test data, which takes into account the heterogeneous softening of the post-interruption test sample. Conventional and "inverse" methods were used to identify the SRX kinetics for a model austenitic steel deformed at 1273 K (with a strain rate of 1 s-1) using the hot torsion test assess the merits of each method. Typical "static recrystallization distribution maps" in the test sample indicated that, at the onset of the second pass deformation with less than a critical holding time and a given pre-strain, a "partially-recrystallized zone" existed in the cylindrical core of the specimen near its center line. For the investigated scenario, the core was confined in the first half of the gauge radius when the holding time and the maximum pre strain were below 29 s and 0.5, respectively. For maximum pre strains smaller than 0.2, the specimen did not fully recrystallize, even at the gauge surface after holding for 50 s. Under such conditions, the conventional methods produced significant error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement changed with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni-30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperature that then act as sites for static transformation. © 2008 World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudou-se o comportamento do aço inoxidável ABNT 304 à corrosão-sob-tensão (C.S.T.) em soluções aquosas com 0,1%, 3,5% e 20% de NaCl, na temperatura de 103°C, através de ensaios de carga constante. Com auxílio das técnicas e conceitos de Mecânica de Fratura Linear Elástica e das análises eletroquímicas procurou-se encontrar as condições em que ocorre C.S.T. no sistema aço inoxidável austenítico/solução aquosa de NaCl a 103°C. Utilizou-se o corpo-de-prova do tipo dupla viga em balanço (T-notch double cantilever beam: TN-DCB), com intuito de observar a influência do fator de intensidade de tensão, concentração da solução e potencial eletroquímico. Estimou-se o valor do fator de intensidade de tensão limite (KICST) e a velocidade de propagação das trincas; também foram analisadas outras importantes características em termos mecanísticos. Definiu-se faixas de potenciais e valores de intensidade de tensão a partir dos quais ocorre o surgimento de trincas por C.S.T.. Fêz-se análises metalográficas dos corpos-de-prova onde se pode constatar trincas transgranulares bem típicas do fenômeno de C.S.T.. Foram feitos alguns testes em solução aquosa saturada de MgCl2, em ebulição, para se comparar as diferentes soluções quanto ao fenômeno de C.S.T.. Alterou-se as dimensões do corpo-de-prova para avaliar a orientação da propagação das trincas por C.S.T..

Relevância:

10.00% 10.00%

Publicador:

Resumo:

R.R.M. de Sousa et al. Nitriding in cathodic cage of stainless steel AISI 316: Influence of sample position. Vacuum, [s.l.], n.83, 2009. Disponivel em: . Acesso em: 04 out.2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanical and tribological properties of AISI 304 and AISI 316 stainless steels submitted to glow discharge ion nitriding are reported. The atmosphere was 20:80 - N2:H2 with substrate temperatures ranging from 300 to 500 °C. Treatment at 300 °C produced expanded austenite (γN) in both steels. Increasing the temperature, the phases γ′-Fe4N and ε- Fe2+xN were present and the latter is the major phase for AISI 304. At 500 °C, the CrN phase was also identified in both steels. Hardnesses of about 13-14 GPa at near surface regions were obtained in both steels. Moreover, AISI 316 nitrided at 500 °C has the deepest hard layer. Tribological tests showed that wear can be reduced by up to a factor of six after the nitriding processes, even for a working temperature of 300 °C. The profiles during and after nanoscratch tests did not reveal significant differences after nitriding processes in both steels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work shows a contribution to the studies of development and solid sinterization of a metallic matrix composite MMC that has as starter materials 316L stainless steel atomized with water, and two different Tantalum Carbide TaC powders, with averages crystallite sizes of 13.78 nm and 40.66 nm. Aiming the metallic matrix s density and hardness increase was added different nanometric sizes of TaC by dispersion. The 316L stainless steel is an alloy largely used because it s high resistance to corrosion property. Although, its application is limited by the low wear resistance, consequence of its low hardness. Besides this, it shows low sinterability and it cannot be hardened by thermal treatments traditional methods because of the austenitic structure, face centered cubic, stabilized mainly in nickel presence. Steel samples added with TaC 3% wt (each sample with different type of carbide), following a mechanical milling route using conventional mill for 24 hours. Each one of the resulted samples, as well as the pure steel sample, were compacted at 700 MPa, room temperature, without any addictive, uniaxial tension, using a 5 mm diameter cylindrical mold, and quantity calculated to obtain compacted final average height of 5 mm. Subsequently, were sintered in vacuum atmosphere, temperature of 1290ºC, heating rate of 20ºC/min, using different soaking times of 30 and 60 min and cooled at room temperature. The sintered samples were submitted to density and micro-hardness analysis. The TaC reforced samples showed higher density values and an expressive hardness increase. The complementary analysis in optical microscope, scanning electronic microscope and X ray diffractometer, showed that the TaC, processed form, contributed with the hardness increase, by densification, itself hardness and grains growth control at the metallic matrix, segregating itself to the grain boarders

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal/ceramic interfaces using zirconia have dominated the industrial applications in the last decade, due to the high mechanical strength and fracture toughness of zirconia, especially at temperatures below 300 ºC. Also noteworthy is the good ionic conductivity in high temperatures of this component. In this work joining between ZrO2 Y-TZP and ZrO2 Mg-PSZ with austenitic stainless steel was studied. These joints were brazed at high-vacuum after mechanical metallization with Ti using filler alloys composed by Ag-Cu and Ag-Cu-Ni. The influence of the metallization, and the affinity between the different groups (ceramic / filler alloys) was evaluated, in order to achieve strong metal/ceramic joints. Evaluation of joints and interfaces, also the characterization of base materials was implemented using various techniques, such as: x-ray diffraction, leak test, three-point flexural test and scanning electron microscopy with chemical analysis. The microstructural analysis revealed physical and chemical bonds in the metal/ceramic interfaces, providing superior leak proof joints and stress cracking, in order to a good joint in all brazed samples. Precipitation zones and reaction layers with eutetic characteristics were observed between the steel and the filler metal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a cooling system for cutting tool in turning based in a toolholder with cooling fluid flowing inside its body being that this fluid must necessarily be able to phase change due to heat generated from machining processes. In this way, the fluid evaporates just under the cutting tool allowing a heat transfer more efficient than if were used a fluid without phase change once the latent heat of evaporation is beneficial for removal heat. Following, the cooling fluid evaporated passes through a condenser located out of the toolholder where it is condensated and returns to the toolholder again and a new cycle is started. In this study, the R-123, a hydrochlorofluorocarbon (HCFC) fluid, was selected for the turning of a Cr-Ni-Nb-Mn-N austenitic steel of hard machinability. The machining tests were carried out under three different machining conditions: dry machining, external cutting fluid (conventional method), and with the toolholder proposed. As result, the developed system allows a surface roughness up to 10% better than dry machining and a tool life close to the conventional method, but 32% superior to dry machining; moreover, there are environmental and economics advantages once the cooling fluid is maintained in a loop circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensaios de tração uniaxiais foram empregados para deformar aços inoxidáveis austeníticos do tipo 304, em diferentes temperaturas abaixo da ambiente (de 77 K a 300 K). A relação entre a estabilidade da austenita e o encruamento, em função da temperatura de teste, é discutida quanto à transformação martensítica induzida por deformação e ao deslizamento de discordâncias na austenita. em curvas tensão-deformação que assumem a equação de Ludwik sigma = sigmao + képsilonn, na qual sigma é a tensão verdadeira e e a elongação plástica verdadeira, um modo conveniente para analisar o encruamento é por meio do diagrama log dsigma / dépsilon versus log épsilon. O aspecto significativo é a variação da taxa de encruamento dsigma / dépsilon com a elongação plástica verdadeira nas diferentes temperaturas. As mudanças no comportamento do encruamento motivando até três estágios de deformação são associadas a diferentes processos microestruturais. A transformação martensítica pode ser considerada como um processo de deformação que compete com o processo usual de deslizamento. A investigação desses estágios, na região plástica, produz uma referência qualitativa de como diferentes fatores, tais como o grau de deformação, temperatura e composição química da austenita, afetam a transformação austenita-martensita.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O artigo teve como objetivo estudar a evolução do crescimento, distribuição e classificação dos pites em aços inoxidáveis austeníticos AISI 310S no estado como recebida e tratado termicamente, submetidos a diferentes tempos de exposição em meio salino. A aplicabilidade deste trabalho baseou-se no desenvolvimento de uma técnica para caracterização morfológica da corrosão localizada, associado com os aspectos de descrição de formas, tamanho, parâmetros específicos e populacionais. A metodologia consistiu nas seguintes etapas: preparação dos corpos de prova, testes de corrosão via névoa salina em diferentes condições, análise microestrutural, análise dos perfis dos pites, processamento digital e análise de imagens, visando caracterizar a distribuição, morfologia e o tamanho dos pites. Os resultados obtidos no processamento digital e análise de imagens dos perfis foram submetidos á análise estatística, utilizando à mediana como parâmetro de avaliação na liga como recebido e tratada. A liga como recebido, exibe a seguinte morfologia: pites hemisféricos> região de transição A> região de transição B> irregulares> cônicos. A quantidade de pites na liga tratada a cada tempo de exposição é: região de transição B> hemisféricos> região de transição A> cônicos> irregulares.