914 resultados para Approximation diophantienne simultanée


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approximate solution for the first passage probability of a stationary Gaussian random process is presented which is based on the estimation of the mean clump size. A simple expression for the mean clump size is derived in terms of the cumulative normal distribution function, which avoids the lengthy numerical integrations which are required by similar existing techniques. The method is applied to a linear oscillator and an ideal bandpass process and good agreement with published results is obtained. By making a slight modification to an existing analysis it is shown that a widely used empirical result for the asymptotic form of the first passage probability can be deduced theoretically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerically well-conditioned state-space realisations for all-pass systems, such as Padé approximations to exp(-s), are derived that can be computed using exact integer arithmetic. This is then applied to the a series of functions of exp(-s). It is also shown that the H-infinity norm of the transfer function from the input to the state of a balanced realisation of the Padé approximation of exp(-s) is unity. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IGBTs realise high-performance power converters. Unfortunately, with fast switching of the IGBT-free wheel diode chopper cell, such circuits are intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally needed on the load and supply side. In order to design these EMI suppression components, designers need to predict the EMI level with reasonable accuracy for a given structure and operating mode. Simplifying the transient IGBT switching current and voltage into a multiple slope switching waveform approximation offers a feasible way to estimate conducted EMI with some accuracy. This method is dependent on the availability of high-fidelity measurements. Also, that multiple slope approximation needs careful and time-costly IGBT parameters optimisation process to approach the real switching waveform. In this paper, Active Voltage Control Gate Drive(AVC GD) is employed to shape IGBT switching into several defined slopes. As a result, Conducted EMI prediction by multiple slope switching approximation could be more accurate, less costly but more friendly for implementation. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact calculation of mode quality factor Q is a key problem in the design of high-Q photonic crystal nanocavity. On the basis of further investigation on conventional Pade approximation, FDM and DFT, Pade approximation with Baker's algorithm is enhanced through introducing multiple frequency search and parabola interpolation. Though Pade approximation is a nonlinear signal processing method and only short time sequence is needed, we find the different length of sequence requirements for 2D and 3D FDTD, which is very important to obtain convergent and accurate results. By using the modified Pade approximation method and 3D FDTD, the 2D slab photonic crystal nanocavity is analyzed and high-Q multimode can be solved quickly instead of large range high-resolution scanning. Monitor position has also been investigated. These results are very helpful to the design of photonic crystal nanocavity devices. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pade approximation with Baker's algorithm is compared with the least-squares Prony method and the generalized pencil-of-functions (GPOF) method for calculating mode frequencies and mode Q factors for coupled optical microdisks by FDTD technique. Comparisons of intensity spectra and the corresponding mode frequencies and Q factors show that the Pade approximation can yield more stable results than the Prony and the GPOF methods, especially the intensity spectrum. The results of the Prony method and the GPOF method are greatly influenced by the selected number of resonant modes, which need to be optimized during the data processing, in addition to the length of the time response signal. Furthermore, the Pade approximation is applied to calculate light delay for embedded microring resonators from complex transmission spectra obtained by the Pade approximation from a FDTD output. The Prony and the GPOF methods cannot be applied to calculate the transmission spectra, because the transmission signal obtained by the FDTD simulation cannot be expressed as a sum of damped complex exponentials. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a modified method for detecting the concurrence in an arbitrary two-qubit quantum state rho(AB) with local operations and classical communication. In this method, it is not necessary for the two observers to prepare the quantum state rho(AB) by the structural physical approximation. Their main task is to measure four specific functions via two local quantum networks. With these functions they can determine the concurrence and then the entanglement of formation.