991 resultados para Approximate spelling
Resumo:
Approximate entropy (ApEn) of blood pressure (BP) can be easily measured based on software analysing 24-h ambulatory BP monitoring (ABPM), but the clinical value of this measure is unknown. In a prospective study we investigated whether ApEn of BP predicts, in addition to average and variability of BP, the risk of hypertensive crisis. In 57 patients with known hypertension we measured ApEn, average and variability of systolic and diastolic BP based on 24-h ABPM. Eight of these fifty-seven patients developed hypertensive crisis during follow-up (mean follow-up duration 726 days). In bivariate regression analysis, ApEn of systolic BP (P<0.01), average of systolic BP (P=0.02) and average of diastolic BP (P=0.03) were significant predictors of hypertensive crisis. The incidence rate ratio of hypertensive crisis was 14.0 (95% confidence interval (CI) 1.8, 631.5; P<0.01) for high ApEn of systolic BP as compared to low values. In multivariable regression analysis, ApEn of systolic (P=0.01) and average of diastolic BP (P<0.01) were independent predictors of hypertensive crisis. A combination of these two measures had a positive predictive value of 75%, and a negative predictive value of 91%, respectively. ApEn, combined with other measures of 24-h ABPM, is a potentially powerful predictor of hypertensive crisis. If confirmed in independent samples, these findings have major clinical implications since measures predicting the risk of hypertensive crisis define patients requiring intensive follow-up and intensified therapy.
Resumo:
This project addresses the potential impacts of changing climate on dry-season water storage and discharge from a small, mountain catchment in Tanzania. Villagers and water managers around the catchment have experienced worsening water scarcity and attribute it to increasing population and demand, but very little has been done to understand the physical characteristics and hydrological behavior of the spring catchment. The physical nature of the aquifer was characterized and water balance models were calibrated to discharge observations so as to be able to explore relative changes in aquifer storage resulting from climate changes. To characterize the shallow aquifer supplying water to the Jandu spring, water quality and geochemistry data were analyzed, discharge recession analysis was performed, and two water balance models were developed and tested. Jandu geochemistry suggests a shallow, meteorically-recharged aquifer system with short circulation times. Baseflow recession analysis showed that the catchment behavior could be represented by a linear storage model with an average recession constant of 0.151/month from 2004-2010. Two modified Thornthwaite-Mather Water Balance (TMWB) models were calibrated using historic rainfall and discharge data and shown to reproduce dry-season flows with Nash-Sutcliffe efficiencies between 0.86 and 0.91. The modified TMWB models were then used to examine the impacts of nineteen, perturbed climate scenarios to test the potential impacts of regional climate change on catchment storage during the dry season. Forcing the models with realistic scenarios for average monthly temperature, annual precipitation, and seasonal rainfall distribution demonstrated that even small climate changes might adversely impact aquifer storage conditions at the onset of the dry season. The scale of the change was dependent on the direction (increasing vs. decreasing) and magnitude of climate change (temperature and precipitation). This study demonstrates that small, mountain aquifer characterization is possible using simple water quality parameters, recession analysis can be integrated into modeling aquifer storage parameters, and water balance models can accurately reproduce dry-season discharges and might be useful tools to assess climate change impacts. However, uncertainty in current climate projections and lack of data for testing the predictive capabilities of the model beyond the present data set, make the forecasts of changes in discharge also uncertain. The hydrologic tools used herein offer promise for future research in understanding small, shallow, mountainous aquifers and could potentially be developed and used by water resource professionals to assess climatic influences on local hydrologic systems.
Resumo:
This paper considers a framework where data from correlated sources are transmitted with the help of network coding in ad hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth variations. We show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples showing how the proposed algorithm can be deployed in sensor networks and distributed imaging applications.