907 resultados para Amyloid beta-Peptides
Resumo:
The crystal state conformations of three peptides containing the alpha, alpha-dialkylated residues, alpha,alpha-di-n-propylglycine (Dpg) and alpha,alpha-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II beta-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: phi = 66.2 degrees, psi = 19.3 degrees; III: phi = 66.5 degrees, psi = 21.1 degrees) deviate appreciably from ideal values for the i + 2 residue in a type II beta-turn. In both peptides the observed (N...O) distances between the Boc CO and Ala(3) NH groups are far too long (I: 3.44 Angstrom; III: 3.63 Angstrom) for an intramolecular 4 --> 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive beta-turn (type III-III in IIA and type III-I in IIB) or incipient 3(10)-helical structures, stabilized by two intramolecular 4 --> 1 hydrogen bonds. In all four molecules the bond angle N-C-alpha-C' (tau) at the Dxg residues are greater than or equal to 110 degrees. The observation of conformational angles in the helical region of phi,psi space at these residues is consistent with theoretical predictions.
Resumo:
Herein, we report a simple and efficient methodology for the synthesis of beta-amino disulfides by regioselective ring opening of sulfamidates with benzyltriethylammonium tetrathiomolybdate [BnNEt3](2)MoS4. Stability and reactivity of different protecting groups under the reaction conditions have been discussed. This methodology has also been extended to serine and threonine derived sulfamidates to furnish cystine and 3,3'-dimethyl cystine derivatives.
Resumo:
One of the monoclonal antibodies raised against bovine beta-lactoglobulin reacted with human serum retinol binding protein. The finding that this monoclonal antibody also reacted with the serum retinol binding proteins isolated from other animals, suggested that this epitopic conformation is conserved among these proteins. Using ELISA and various synthetic peptides of defined sequence, we show in this paper that the epitope defined by this monoclonal antibody comprises of the highly conserved core sequence of DTDY present in beta-lactoglobulin and retinol binding proteins.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I' beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 -> 1 hydrogen bonds. In addition, a single 4 -> 1 hydrogen bond is also observed at the N-terminus. All live Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C-alpha-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean r values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
The literature review elucidates the mechanism of oxidation in proteins and amino acids and gives an overview of the detection and analysis of protein oxidation products as well as information about ?-lactoglobulin and studies carried out on modifications of this protein under certain conditions. The experimental research included the fractionation of the tryptic peptides of ?-lactoglobulin using preparative-HPLC-MS and monitoring the oxidation process of these peptides via reverse phase-HPLC-UV. Peptides chosen to be oxidized were selected with respect to their amino acid content which were susceptible to oxidation and fractionated according to their m/z values. These peptides were: IPAVFK (m/z 674), ALPMHIR (m/z 838), LIVTQTMK (m/z 934) and VLVLDTDYK (m/z 1066). Even though it was not possible to solely isolate the target peptides due to co-elution of various fractions, the percentages of target peptides in the samples were satisfactory to carry out the oxidation procedure. IPAVFK and VLVLDTDYK fractions were found to yield the oxidation products reviewed in literature, however, unoxidized peptides were still present in high amounts after 21 days of oxidation. The UV data at 260 and 280 nm enabled to monitor both the main peptides and the oxidation products due to the absorbance of aromatic side-chains these peptides possess. ALPMHIR and LIVTQTMK fractions were oxidatively consumed rapidly and oxidation products of these peptides were observed even on day 0. High rates of depletion of these peptides were acredited to the presence of His (H) and sulfur-containing side-chains of Met (M). In conclusion, selected peptides hold the potential to be utilized as marker peptides in ?-lactoglobulin oxidation.
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
Two tripeptides of the type Boc-Pro-ΔZX-Gly-NHEt (where X = Leu, Phe) have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. and i.r. spectroscopy. These conformational studies indicated that ΔZLeu, similar to ΔZPhe, has a strong tendency to stabilize folded Type II β-turn conformations when present at i + 2 position.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.
Resumo:
The effect of gem-dialkyl substituents on the backbone conformations of beta-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-beta 2,2Ac6c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx=Leu (1), Phe (2); Boc=tert-butyloxycarbonyl) and Boc-Xxx-beta 3,3Ac6c(1-aminocyclohexaneacetic acid)-NHMe (Xxx=Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-beta 2,2Ac6c-NHMe (1) established a C11 hydrogen-bonded turn in the a beta-hybrid sequence. The observed torsion angles (a(similar to-60 degrees, similar to-30 degrees), beta(similar to-90 degrees, similar to 60 degrees, similar to-90 degrees)) corresponded to a C11 helical turn, which was a backbone-expanded analogue of the type III beta turn in aa sequences. The crystal structure of the peptide Boc-Phe-beta 3,3Ac6c-NHMe (4) established a C11 hydrogen-bonded turn with distinctly different backbone torsion angles (a(similar to-60 degrees, similar to 120 degrees), beta(similar to 60 degrees, ?60 degrees, similar to-60 degrees)), which corresponded to a backbone-expanded analogue of the type II beta turn observed in aa sequences. In peptide 4, the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these a beta-hybrid sequences.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac(6)c, Ala; Aib = alpha-aminoisobutyric acid; Ac(6)c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac(6)c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described. All the octapeptides adopt type II' beta-turn nucleated hairpins, stabilized by three or four cross-strand intramolecular hydrogen bonds. The angle of twist between the two antiparallel strands lies in the range of -9.8 degrees to -26.7 degrees. A detailed analysis of packing motifs in peptide hairpin crystals is presented, revealing three broad modes of association: parallel packing, antiparallel packing and orthogonal packing. An attempt to correlate aggregation modes in solution with observed packing motifs in crystals has been made by indexing of crystal faces in the case of three of the peptide hairpins. The observed modes of hairpin aggregation may be of relevance in modeling multiple modes of association, which may provide insights into the structure of insoluble polypeptide aggregates.
Resumo:
Close-packed helices with mixed hydrogen bond directionality are unprecedented in the structural chemistry of alpha-polypeptides. While NMR studies in solution state provide strong evidence for the occurrence of mixed helices in (beta beta)(n) and (alpha beta)(n) sequences, limited information is currently available in crystals. The peptide structures presented show the occurrence of C-11/C-9 helices in (alpha beta)(n) peptides. Transitions between C-11 and C-11/C-9 helices are observed upon varying the alpha-amino acid residue.