180 resultados para Algorithmes heuristiques


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’objectif général de cette thèse de doctorat est de mieux comprendre comment le public interprète les nouvelles scientifiques portant sur la génétique humaine, plus précisément les nouvelles portant sur la génétique des comportements et celles portant sur la génétique des groupes raciaux. L’ouvrage prend la forme d’une thèse par article. Le Chapitre 1 introduit le lecteur aux buts et aux pratiques de la vulgarisation scientifique, présente un sommaire de la recherche sur les effets des médias, résume les principaux travaux produits par le champ de la génopolitique, et définit la structure des croyances du public à l’égard de l’influence de la génétique sur les traits humains. Le Chapitre 2 présente les fondements de la méthode expérimentale, il en explique les atouts et il offre des exemples de différents types de devis expérimentaux utilisés en science politique. Toutes les recherches produites dans cette thèse reposent au moins en partie sur cette méthode. Le Chapitre 3 présente les résultats d’une expérience de sondage qui vise à mesurer l’effet de la lecture d’une nouvelle à propos de la recherche en génétique des comportements sur des participants. L’étude démontre que le public interprète la nouvelle avec maladresse et tend à généraliser l’influence de la génétique à d’autres traits humains qui n’y sont pas mentionnés. J’avance l’hypothèse qu’un raccourci psychologique amplement documenté puisse expliquer cette réaction : l’heuristique de l’ancrage et de l’ajustement. Le Chapitre 4 présente lui aussi les résultats d’une expérience de sondage. L’étude consiste à manipuler certaines informations du contenu d’une nouvelle sur la génopolitique de manière à vérifier si certains éléments sont particulièrement susceptibles de mener à la généralisation hâtive mise en évidence dans le Chapitre 3. Les analyses suggèrent que cette généralisation est amplifiée lorsque la nouvelle présente de hauts niveaux d’héritabilité tirés d’études de jumeaux, ainsi que lorsqu’elle présente des travaux de génétique des populations visant à étudier l’origine des différences géographiques. Ce chapitre présente des recommandations à l’égard des journalistes scientifiques. Le Chapitre 5 s’intéresse à un aspect différent de la génétique humaine : celui de la génétique des races. L’objectif de cette recherche est de comprendre comment le public réagit aux travaux qui invalident l’idée selon laquelle les humains sont divisés en différentes races génétiquement distinctes. Les analyses de données transversales ainsi que les résultats d’une expérience de sondage convergent et indiquent que les conservateurs et les libéraux réagissent de manière diamétralement opposée à cette information. D’un côté, les libéraux acceptent le constat scientifique et réduisent leur impression que la génétique explique en partie les inégalités sociales; de l’autre, les conservateurs rejettent l’argument avec une intensité si forte que le rôle qu’ils attribuent aux différences génétiques s’en voit bonifié. Ces résultats sont interprétés à partir de la théorie du raisonnement motivé. Enfin, le Chapitre 6 résume les principaux constats, met en évidence les contributions que ma thèse apporte à la science politique et à la communication scientifique, et présente quelques pistes pour la recherche future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce rapport de mémoire, nous avons utilisé les méthodes numériques telles que la dynamique moléculaire (code de Lammps) et ART-cinétique. Ce dernier est un algorithme de Monte Carlo cinétique hors réseau avec construction du catalogue d'événements à la volée qui incorpore exactement tous les effets élastiques. Dans la première partie, nous avons comparé et évalué des divers algorithmes de la recherche du minimum global sur une surface d'énergie potentielle des matériaux complexes. Ces divers algorithmes choisis sont essentiellement ceux qui utilisent le principe Bell-Evans-Polanyi pour explorer la surface d'énergie potentielle. Cette étude nous a permis de comprendre d'une part, les étapes nécessaires pour un matériau complexe d'échapper d'un minimum local vers un autre et d'autre part de contrôler les recherches pour vite trouver le minimum global. En plus, ces travaux nous ont amené à comprendre la force de ces méthodes sur la cinétique de l'évolution structurale de ces matériaux complexes. Dans la deuxième partie, nous avons mis en place un outil de simulation (le potentiel ReaxFF couplé avec ART-cinétique) capable d'étudier les étapes et les processus d'oxydation du silicium pendant des temps long comparable expérimentalement. Pour valider le système mis en place, nous avons effectué des tests sur les premières étapes d'oxydation du silicium. Les résultats obtenus sont en accord avec la littérature. Cet outil va être utilisé pour comprendre les vrais processus de l'oxydation et les transitions possibles des atomes d'oxygène à la surface du silicium associée avec les énergies de barrière, des questions qui sont des défis pour l'industrie micro-électronique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Étant donnée une fonction bornée (supérieurement ou inférieurement) $f:\mathbb{N}^k \To \Real$ par une expression mathématique, le problème de trouver les points extrémaux de $f$ sur chaque ensemble fini $S \subset \mathbb{N}^k$ est bien défini du point de vu classique. Du point de vue de la théorie de la calculabilité néanmoins il faut éviter les cas pathologiques où ce problème a une complexité de Kolmogorov infinie. La principale restriction consiste à définir l'ordre, parce que la comparaison entre les nombres réels n'est pas décidable. On résout ce problème grâce à une structure qui contient deux algorithmes, un algorithme d'analyse réelle récursive pour évaluer la fonction-coût en arithmétique à précision infinie et un autre algorithme qui transforme chaque valeur de cette fonction en un vecteur d'un espace, qui en général est de dimension infinie. On développe trois cas particuliers de cette structure, un de eux correspondant à la méthode d'approximation de Rauzy. Finalement, on établit une comparaison entre les meilleures approximations diophantiennes simultanées obtenues par la méthode de Rauzy (selon l'interprétation donnée ici) et une autre méthode, appelée tétraédrique, que l'on introduit à partir de l'espace vectoriel engendré par les logarithmes de nombres premiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La modélisation géométrique est importante autant en infographie qu'en ingénierie. Notre capacité à représenter l'information géométrique fixe les limites et la facilité avec laquelle on manipule les objets 3D. Une de ces représentations géométriques est le maillage volumique, formé de polyèdres assemblés de sorte à approcher une forme désirée. Certaines applications, tels que le placage de textures et le remaillage, ont avantage à déformer le maillage vers un domaine plus régulier pour faciliter le traitement. On dit qu'une déformation est \emph{quasi-conforme} si elle borne la distorsion. Cette thèse porte sur l’étude et le développement d'algorithmes de déformation quasi-conforme de maillages volumiques. Nous étudions ces types de déformations parce qu’elles offrent de bonnes propriétés de préservation de l’aspect local d’un solide et qu’elles ont été peu étudiées dans le contexte de l’informatique graphique, contrairement à leurs pendants 2D. Cette recherche tente de généraliser aux volumes des concepts bien maitrisés pour la déformation de surfaces. Premièrement, nous présentons une approche linéaire de la quasi-conformité. Nous développons une méthode déformant l’objet vers son domaine paramétrique par une méthode des moindres carrés linéaires. Cette méthode est simple d'implémentation et rapide d'exécution, mais n'est qu'une approximation de la quasi-conformité car elle ne borne pas la distorsion. Deuxièmement, nous remédions à ce problème par une approche non linéaire basée sur les positions des sommets. Nous développons une technique déformant le domaine paramétrique vers le solide par une méthode des moindres carrés non linéaires. La non-linéarité permet l’inclusion de contraintes garantissant l’injectivité de la déformation. De plus, la déformation du domaine paramétrique au lieu de l’objet lui-même permet l’utilisation de domaines plus généraux. Troisièmement, nous présentons une approche non linéaire basée sur les angles dièdres. Cette méthode définit la déformation du solide par les angles dièdres au lieu des positions des sommets du maillage. Ce changement de variables permet une expression naturelle des bornes de distorsion de la déformation. Nous présentons quelques applications de cette nouvelle approche dont la paramétrisation, l'interpolation, l'optimisation et la compression de maillages tétraédriques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire s'intéresse à la détection de mouvement dans une séquence d'images acquises à l'aide d'une caméra fixe. Dans ce problème, la difficulté vient du fait que les mouvements récurrents ou non significatifs de la scène tels que les oscillations d'une branche, l'ombre d'un objet ou les remous d'une surface d'eau doivent être ignorés et classés comme appartenant aux régions statiques de la scène. La plupart des méthodes de détection de mouvement utilisées à ce jour reposent en fait sur le principe bas-niveau de la modélisation puis la soustraction de l'arrière-plan. Ces méthodes sont simples et rapides mais aussi limitées dans les cas où l'arrière-plan est complexe ou bruité (neige, pluie, ombres, etc.). Cette recherche consiste à proposer une technique d'amélioration de ces algorithmes dont l'idée principale est d'exploiter et mimer deux caractéristiques essentielles du système de vision humain. Pour assurer une vision nette de l’objet (qu’il soit fixe ou mobile) puis l'analyser et l'identifier, l'œil ne parcourt pas la scène de façon continue, mais opère par une série de ``balayages'' ou de saccades autour (des points caractéristiques) de l'objet en question. Pour chaque fixation pendant laquelle l'œil reste relativement immobile, l'image est projetée au niveau de la rétine puis interprétée en coordonnées log polaires dont le centre est l'endroit fixé par l'oeil. Les traitements bas-niveau de détection de mouvement doivent donc s'opérer sur cette image transformée qui est centrée pour un point (de vue) particulier de la scène. L'étape suivante (intégration trans-saccadique du Système Visuel Humain (SVH)) consiste ensuite à combiner ces détections de mouvement obtenues pour les différents centres de cette transformée pour fusionner les différentes interprétations visuelles obtenues selon ses différents points de vue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les artéfacts métalliques entraînent un épaississement artéfactuel de la paroi des tuteurs en tomodensitométrie (TDM) avec réduction apparente de leur lumière. Cette étude transversale prospective, devis mesures répétées et observateurs avec méthode en aveugle, chez 24 patients consécutifs/71 tuteurs coronariens a pour objectif de comparer l’épaisseur de paroi des tuteurs en TDM après reconstruction par un algorithme avec renforcement des bords et un algorithme standard. Une angiographie coronarienne par TDM 256 coupes a été réalisée, avec reconstruction par algorithmes avec renforcement des bords et standard. L’épaisseur de paroi des tuteurs était mesurée par méthodes orthogonale (diamètres) et circonférentielle (circonférences). La qualité d’image des tuteurs était évaluée par échelle ordinale, et les données analysées par modèles linéaire mixte et régression logistique des cotes proportionnelles. L’épaisseur de paroi des tuteurs était inférieure avec l’algorithme avec renforcement des bords comparé à l’algorithme standard, avec les méthodes orthogonale (0,97±0,02 vs 1,09±0,03 mm, respectivement; p<0,001) et circonférentielle (1,13±0,02 vs 1,21±0,02 mm, respectivement; p<0,001). Le premier causait moins de surestimation par rapport à l’épaisseur nominale comparé au second, avec méthodes orthogonale (0,89±0,19 vs 1,00±0,26 mm, respectivement; p<0,001) et circonférentielle (1,06±0,26 vs 1,13±0,31 mm, respectivement; p=0,005) et diminuait de 6 % la surestimation. Les scores de qualité étaient meilleurs avec l’algorithme avec renforcement des bords (OR 3,71; IC 95% 2,33–5,92; p<0,001). En conclusion, la reconstruction des images avec l’algorithme avec renforcement des bords génère des parois de tuteurs plus minces, moins de surestimation, et de meilleurs scores de qualité d’image que l’algorithme standard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les artéfacts métalliques entraînent un épaississement artéfactuel de la paroi des tuteurs en tomodensitométrie (TDM) avec réduction apparente de leur lumière. Cette étude transversale prospective, devis mesures répétées et observateurs avec méthode en aveugle, chez 24 patients consécutifs/71 tuteurs coronariens a pour objectif de comparer l’épaisseur de paroi des tuteurs en TDM après reconstruction par un algorithme avec renforcement des bords et un algorithme standard. Une angiographie coronarienne par TDM 256 coupes a été réalisée, avec reconstruction par algorithmes avec renforcement des bords et standard. L’épaisseur de paroi des tuteurs était mesurée par méthodes orthogonale (diamètres) et circonférentielle (circonférences). La qualité d’image des tuteurs était évaluée par échelle ordinale, et les données analysées par modèles linéaire mixte et régression logistique des cotes proportionnelles. L’épaisseur de paroi des tuteurs était inférieure avec l’algorithme avec renforcement des bords comparé à l’algorithme standard, avec les méthodes orthogonale (0,97±0,02 vs 1,09±0,03 mm, respectivement; p<0,001) et circonférentielle (1,13±0,02 vs 1,21±0,02 mm, respectivement; p<0,001). Le premier causait moins de surestimation par rapport à l’épaisseur nominale comparé au second, avec méthodes orthogonale (0,89±0,19 vs 1,00±0,26 mm, respectivement; p<0,001) et circonférentielle (1,06±0,26 vs 1,13±0,31 mm, respectivement; p=0,005) et diminuait de 6 % la surestimation. Les scores de qualité étaient meilleurs avec l’algorithme avec renforcement des bords (OR 3,71; IC 95% 2,33–5,92; p<0,001). En conclusion, la reconstruction des images avec l’algorithme avec renforcement des bords génère des parois de tuteurs plus minces, moins de surestimation, et de meilleurs scores de qualité d’image que l’algorithme standard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les informations sensorielles sont traitées dans le cortex par des réseaux de neurones co-activés qui forment des assemblées neuronales fonctionnelles. Le traitement visuel dans le cortex est régit par différents aspects des caractéristiques neuronales tels que l’aspect anatomique, électrophysiologique et moléculaire. Au sein du cortex visuel primaire, les neurones sont sélectifs à divers attributs des stimuli tels que l’orientation, la direction, le mouvement et la fréquence spatiale. Chacun de ces attributs conduit à une activité de décharge maximale pour une population neuronale spécifique. Les neurones du cortex visuel ont cependant la capacité de changer leur sélectivité en réponse à une exposition prolongée d’un stimulus approprié appelée apprentissage visuel ou adaptation visuelle à un stimulus non préférentiel. De ce fait, l’objectif principal de cette thèse est d’investiguer les mécanismes neuronaux qui régissent le traitement visuel durant une plasticité induite par adaptation chez des animaux adultes. Ces mécanismes sont traités sous différents aspects : la connectivité neuronale, la sélectivité neuronale, les propriétés électrophysiologiques des neurones et les effets des drogues (sérotonine et fluoxétine). Le modèle testé se base sur les colonnes d’orientation du cortex visuel primaire. La présente thèse est subdivisée en quatre principaux chapitres. Le premier chapitre (A) traite de la réorganisation du cortex visuel primaire suite à une plasticité induite par adaptation visuelle. Le second chapitre (B) examine la connectivité neuronale fonctionnelle en se basant sur des corrélations croisées entre paires neuronales ainsi que sur des corrélations d’activités de populations neuronales. Le troisième chapitre (C) met en liaison les aspects cités précédemment (les effets de l’adaptation visuelle et la connectivité fonctionnelle) aux propriétés électrophysiologiques des neurones (deux classes de neurones sont traitées : les neurones à décharge régulière et les neurones à décharge rapide ou burst). Enfin, le dernier chapitre (D) a pour objectif l’étude de l’effet du couplage de l’adaptation visuelle à l’administration de certaines drogues, notamment la sérotonine et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Méthodes En utilisant des enregistrements extracellulaires d’activités neuronales dans le cortex visuel primaire (V1) combinés à un processus d’imagerie cérébrale optique intrinsèque, nous enregistrons l’activité de décharge de populations neuronales et nous examinons l’activité de neurones individuels extraite des signaux multi-unitaires. L’analyse de l’activité cérébrale se base sur différents algorithmes : la distinction des propriétés électrophysiologiques des neurones se fait par calcul de l’intervalle de temps entre la vallée et le pic maximal du potentiel d’action (largeur du potentiel d’action), la sélectivité des neurones est basée sur leur taux de décharge à différents stimuli, et la connectivité fonctionnelle utilise des calculs de corrélations croisées. L’utilisation des drogues se fait par administration locale sur la surface du cortex (après une craniotomie et une durotomie). Résultats et conclusions Dans le premier chapitre, nous démontrons la capacité des neurones à modifier leur sélectivité après une période d’adaptation visuelle à un stimulus particulier, ces changements aboutissent à une réorganisation des cartes corticales suivant un patron spécifique. Nous attribuons ce résultat à la flexibilité de groupes fonctionnels de neurones qui étaient longtemps considérés comme des unités anatomiques rigides. En effet, nous observons une restructuration extensive des domaines d’orientation dans le but de remodeler les colonnes d’orientation où chaque stimulus est représenté de façon égale. Ceci est d’autant plus confirmé dans le second chapitre où dans ce cas, les cartes de connectivité fonctionnelle sont investiguées. En accord avec les résultats énumérés précédemment, les cartes de connectivité montrent également une restructuration massive mais de façon intéressante, les neurones utilisent une stratégie de sommation afin de stabiliser leurs poids de connectivité totaux. Ces dynamiques de connectivité sont examinées dans le troisième chapitre en relation avec les propriétés électrophysiologiques des neurones. En effet, deux modes de décharge neuronale permettent la distinction entre deux classes neuronales. Leurs dynamiques de corrélations distinctes suggèrent que ces deux classes jouent des rôles clés différents dans l’encodage et l’intégration des stimuli visuels au sein d’une population neuronale. Enfin, dans le dernier chapitre, l’adaptation visuelle est combinée avec l’administration de certaines substances, notamment la sérotonine (neurotransmetteur) et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Ces deux substances produisent un effet similaire en facilitant l’acquisition des stimuli imposés par adaptation. Lorsqu’un stimulus non optimal est présenté en présence de l’une des deux substances, nous observons une augmentation du taux de décharge des neurones en présentant ce stimulus. Nous présentons un modèle neuronal basé sur cette recherche afin d’expliquer les fluctuations du taux de décharge neuronale en présence ou en absence des drogues. Cette thèse présente de nouvelles perspectives quant à la compréhension de l’adaptation des neurones du cortex visuel primaire adulte dans le but de changer leur sélectivité dans un environnement d’apprentissage. Nous montrons qu’il y a un parfait équilibre entre leurs habiletés plastiques et leur dynamique d’homéostasie.