914 resultados para Algebraic triangulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider certain quadrature rules of highest algebraic degree of precision that involve strong Stieltjes distributions (i.e., strong distributions on the positive real axis). The behavior of the parameters of these quadrature rules, when the distributions are strong c-inversive Stieltjes distributions, is given. A quadrature rule whose parameters have explicit expressions for their determination is presented. An application of this quadrature rule for the evaluation of a certain type of integrals is also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the behaviour of the Moukowski model within the mnten of quantum algebras. The Moszkwski Hamiltonian is diagonalized aractly for different numbers of panicles and for various values of the deformalion parameter of the quanlum algebra involved. We also include ranking in our system and observe its variation as a function of the deformation parameters. © 1992 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An affine sl(n + 1) algebraic construction of the basic constrained KP hierarchy is presented. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and it is shown that these approaches are equivalent. The model is recognized to be the generalized non-linear Schrödinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Bäcklund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. Our construction uncovers the origin of the Toda lattice structure behind the latter hierarchy. © 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A construction technique of finite point constellations in n-dimensional spaces from ideals in rings of algebraic integers is described. An algorithm is presented to find constellations with minimum average energy from a given lattice. For comparison, a numerical table of lattice constellations and group codes is computed for spaces of dimension two, three, and four. © 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the wide diversity of unknown organisms in the environment, 99% of them cannot be grown in traditional culture medium in laboratories. Therefore, metagenomics projects are proposed to study microbial communities present in the environment, from molecular techniques, especially the sequencing. Thereby, for the coming years it is expected an accumulation of sequences produced by these projects. Thus, the sequences produced by genomics and metagenomics projects present several challenges for the treatment, storing and analysis such as: the search for clones containing genes of interest. This work presents the OCI Metagenomics, which allows defines and manages dynamically the rules of clone selection in metagenomic libraries, thought an algebraic approach based on process algebra. Furthermore, a web interface was developed to allow researchers to easily create and execute their own rules to select clones in genomic sequence database. This software has been tested in metagenomic cosmid library and it was able to select clones containing genes of interest. Copyright 2010 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schrödinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of an Ŝℓ2Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows. The equivalence between the latter and the massive Thirring model is also explicitly demonstrated. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that an anisotropic nonquadratic potential, for which a path integral treatment has been recently discussed in the literature, possesses the SO(2, 1) ⊗SO(2, 1) ⊗SO(2, 1) dynamical symmetry, and construct its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. © 1990.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an algebraic technique related to the SO (2, 1) group we construct the Green function for the potential ar2 + b(r sin θ)-2 + c(r cos θ)-2 + dr2 sin2θ + er2 cos2θ. The energy spectrum and the normalized wave functions are also obtained. © 1990.