Algebraic constructions of densest lattices
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
22/10/2015
22/10/2015
01/05/2015
|
Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 2013/25977-7 The aim of this paper is to investigate rotated versions of the densest known lattices in dimensions 2, 3, 4, 5, 6, 7, 8, 12 and 24 constructed via ideals and free Z-modules that are not ideals in subfields of cyclotomic fields. The focus is on totally real number fields and the associated full diversity lattices which may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. We also discuss on the existence of a number field K such that it is possible to obtain the lattices A(2), E-6 and E-7 via a twisted embedding applied to a fractional ideal of O-K. (C) 2015 Elsevier Inc. All rights reserved. |
Formato |
218-235 |
Identificador |
http://www.sciencedirect.com/science/article/pii/S0021869315000526 Journal Of Algebra. San Diego: Academic Press Inc Elsevier Science, v. 429, p. 218-235, 2015. 0021-8693 http://hdl.handle.net/11449/129764 http://dx.doi.org/10.1016/j.jalgebra.2014.12.044 WOS:000352183600009 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal Of Algebra |
Direitos |
closedAccess |
Palavras-Chave | #Algebraic number theory #Lattices #Packing density #Diversity #Minimum product distance #Coding theory |
Tipo |
info:eu-repo/semantics/article |