Algebraic constructions of densest lattices


Autoria(s): Jorge, Grasiele C.; Andrade, Antonio Aparecido de; Costa, Sueli I. R.; Strapasson, Joao E.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

22/10/2015

22/10/2015

01/05/2015

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Processo FAPESP: 2013/25977-7

The aim of this paper is to investigate rotated versions of the densest known lattices in dimensions 2, 3, 4, 5, 6, 7, 8, 12 and 24 constructed via ideals and free Z-modules that are not ideals in subfields of cyclotomic fields. The focus is on totally real number fields and the associated full diversity lattices which may be suitable for signal transmission over both Gaussian and Rayleigh fading channels. We also discuss on the existence of a number field K such that it is possible to obtain the lattices A(2), E-6 and E-7 via a twisted embedding applied to a fractional ideal of O-K. (C) 2015 Elsevier Inc. All rights reserved.

Formato

218-235

Identificador

http://www.sciencedirect.com/science/article/pii/S0021869315000526

Journal Of Algebra. San Diego: Academic Press Inc Elsevier Science, v. 429, p. 218-235, 2015.

0021-8693

http://hdl.handle.net/11449/129764

http://dx.doi.org/10.1016/j.jalgebra.2014.12.044

WOS:000352183600009

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal Of Algebra

Direitos

closedAccess

Palavras-Chave #Algebraic number theory #Lattices #Packing density #Diversity #Minimum product distance #Coding theory
Tipo

info:eu-repo/semantics/article