962 resultados para Algebraic ANRs
Resumo:
In the last decades affine algebraic varieties and Stein manifolds with big (infinite-dimensional) automorphism groups have been intensively studied. Several notions expressing that the automorphisms group is big have been proposed. All of them imply that the manifold in question is an Oka–Forstnerič manifold. This important notion has also recently merged from the intensive studies around the homotopy principle in Complex Analysis. This homotopy principle, which goes back to the 1930s, has had an enormous impact on the development of the area of Several Complex Variables and the number of its applications is constantly growing. In this overview chapter we present three classes of properties: (1) density property, (2) flexibility, and (3) Oka–Forstnerič. For each class we give the relevant definitions, its most significant features and explain the known implications between all these properties. Many difficult mathematical problems could be solved by applying the developed theory, we indicate some of the most spectacular ones.
Resumo:
The objective of this thesis is to study the distribution of the number of principal ideals generated by an irreducible element in an algebraic number field, namely in the non-unique factorization ring of integers of such a field. In particular we are investigating the size of M(x), defined as M ( x ) =∑ (α) α irred.|N (α)|≤≠ 1, where x is any positive real number and N (α) is the norm of α. We finally obtain asymptotic results for hl(x).
Resumo:
The overarching goal of the Pathway Semantics Algorithm (PSA) is to improve the in silico identification of clinically useful hypotheses about molecular patterns in disease progression. By framing biomedical questions within a variety of matrix representations, PSA has the flexibility to analyze combined quantitative and qualitative data over a wide range of stratifications. The resulting hypothetical answers can then move to in vitro and in vivo verification, research assay optimization, clinical validation, and commercialization. Herein PSA is shown to generate novel hypotheses about the significant biological pathways in two disease domains: shock / trauma and hemophilia A, and validated experimentally in the latter. The PSA matrix algebra approach identified differential molecular patterns in biological networks over time and outcome that would not be easily found through direct assays, literature or database searches. In this dissertation, Chapter 1 provides a broad overview of the background and motivation for the study, followed by Chapter 2 with a literature review of relevant computational methods. Chapters 3 and 4 describe PSA for node and edge analysis respectively, and apply the method to disease progression in shock / trauma. Chapter 5 demonstrates the application of PSA to hemophilia A and the validation with experimental results. The work is summarized in Chapter 6, followed by extensive references and an Appendix with additional material.
Resumo:
In this paper we generalize the algebraic density property to not necessarily smooth affine varieties relative to some closed subvariety containing the singular locus. This property implies the remarkable approximation results for holomorphic automorphisms of the Andersén–Lempert theory. We show that an affine toric variety X satisfies this algebraic density property relative to a closed T-invariant subvariety Y if and only if X∖Y≠TX∖Y≠T. For toric surfaces we are able to classify those which possess a strong version of the algebraic density property (relative to the singular locus). The main ingredient in this classification is our proof of an equivariant version of Brunella's famous classification of complete algebraic vector fields in the affine plane.
Resumo:
The problem of parameterizing approximately algebraic curves and surfaces is an active research field, with many implications in practical applications. The problem can be treated locally or globally. We formally state the problem, in its global version for the case of algebraic curves (planar or spatial), and we report on some algorithms approaching it, as well as on the associated error distance analysis.
Resumo:
The subject of this thesis is the real-time implementation of algebraic derivative estimators as observers in nonlinear control of magnetic levitation systems. These estimators are based on operational calculus and implemented as FIR filters, resulting on a feasible real-time implementation. The algebraic method provide a fast, non-asymptotic state estimation. For the magnetic levitation systems, the algebraic estimators may replace the standard asymptotic observers assuring very good performance and robustness. To validate the estimators as observers in closed-loop control, several nonlinear controllers are proposed and implemented in a experimental magnetic levitation prototype. The results show an excellent performance of the proposed control laws together with the algebraic estimators.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography at end of each chapter.
Resumo:
Cover-title.
Resumo:
Cover-title.