984 resultados para Aging effect
Resumo:
BACKGROUND: Elevated plasma levels of interleukin (IL)-6, C-reactive protein (CRP), and D-dimer belong to the biological alterations of the "frailty syndrome," defining increased vulnerability for diseases and mortality with aging. We hypothesized that, compatible with premature frailty, chronic stress and age are related in predicting inflammation and coagulation activity in Alzheimer caregivers. METHODS: Plasma IL-6, CRP, and D-dimer levels were measured in 170 individuals (mean age 73 +/- 9 years; 116 caregivers, 54 noncaregiving controls). Demographic factors, diseases, drugs, and lifestyle variables potentially affecting inflammation and coagulation were obtained by history and adjusted for as covariates in statistical analyses. RESULTS: Caregivers had higher mean levels of IL-6 (1.38 +/- 1.42 vs 1.00 +/- 0.92 pg/mL, p =.032) and of D-dimer (723 +/- 530 vs 471 +/- 211 ng/mL, p <.001) than controls had. CRP levels were similar between groups (p =.44). The relationship between caregiver status and D-dimer was independent of covariates (p =.037) but affected by role overload. Age accounted for much of the relationship with IL-6. After controlling for covariates, the interaction between caregiver status and age was significant for D-dimer (beta =.20, p =.029) and of borderline significance for IL-6 (beta =.17, p =.090). Post hoc regression analyses indicated that, among caregivers, age was significantly correlated with both D-dimer (beta =.50, p <.001) and IL-6 (beta =.38, p =.001). Among controls, however, no significant relationship was observed between age and either D-dimer or IL-6. CONCLUSIONS: The interaction between caregiving status and age for D-dimer and IL-6 suggests the possibility that older caregivers could be at risk of a more rapid transition to the frailty syndrome and clinical manifestations of cardiovascular diseases.
Resumo:
BACKGROUND The electrocardiographic PR interval increases with aging, differs by race, and is associated with atrial fibrillation (AF), pacemaker implantation, and all-cause mortality. We sought to determine the associations between PR interval and heart failure, AF, and mortality in a biracial cohort of older adults. METHODS AND RESULTS The Health, Aging, and Body Composition (Health ABC) Study is a prospective, biracial cohort. We used multivariable Cox proportional hazards models to examine PR interval (hazard ratios expressed per SD increase) and 10-year risks of heart failure, AF, and all-cause mortality. Multivariable models included demographic, anthropometric, and clinical variables in addition to established cardiovascular risk factors. We examined 2722 Health ABC participants (aged 74±3 years, 51.9% women, and 41% black). We did not identify significant effect modification by race for the outcomes studied. After multivariable adjustment, every SD increase (29 ms) in PR interval was associated with a 13% greater 10-year risk of heart failure (95% confidence interval, 1.02-1.25) and a 13% increased risk of incident AF (95% confidence interval, 1.04-1.23). PR interval >200 ms was associated with a 46% increased risk of incident heart failure (95% confidence interval, 1.11-1.93). PR interval was not associated with increased all-cause mortality. CONCLUSIONS We identified significant relationships of PR interval to heart failure and AF in older adults. Our findings extend prior investigations by examining PR interval and associations with adverse outcomes in a biracial cohort of older men and women.
Age affects the adjustment of cognitive control after a conflict: evidence from the bivalency effect
Resumo:
Age affects cognitive control. When facing a conflict, older adults are less able to activate goal-relevant information and inhibit irrelevant information. However, cognitive control also affects the events after a conflict. The purpose of this study was to determine whether age affects the adjustment of cognitive control following a conflict. To this end, we investigated the bivalency effect, that is, the performance slowing occurring after the conflict induced by bivalent stimuli (i.e., stimuli with features for two tasks). In two experiments, we tested young adults (aged 20-30) and older adults (aged 65-85) in a paradigm requiring alternations between three tasks, with bivalent stimuli occasionally occurring on one task. The young adults showed a slowing for all trials following bivalent stimuli. This indicates a widespread and long-lasting bivalency effect, replicating previous findings. In contrast, the older adults showed a more specific and shorter-lived slowing. Thus, age affects the adjustment of cognitive control following a conflict.
Resumo:
Development of methods for rapid screening and stratification of subjects after exposure is an integral part of countermeasures against radiation. The potential demographic and exposure history-related heterogeneity of exposed populations warrants robust biomarkers that withstand and reflect such differences. In this study, the effect of aging and repeated exposure on the metabolic response to sublethal irradiation was examined in mice using UPLC-ESI-QTOF mass spectrometry. Aging attenuated postexposure elevation in excretions of DNA damage biomarkers as well as N(1)-acetylspermidine. Although N(1)-acetylspermidine and 2'-deoxyuridine elevation was highly correlated in all age groups, xanthine and N(1)-acetylspermidine elevation was poorly correlated in older mice. These results may reflect the established decline in DNA damage-repair efficiency associated with aging and indicate a novel role for polyamine metabolism in the process. Although repeated irradiation at long intervals did not affect the elevation of N(1)-acetylspermidine, 2'-deoxyuridine, and xanthine, it did significantly attenuate the elevation of 2'-deoxycytidine and thymidine compared to a single exposure. However, these biomarkers were found to identify exposed subjects with accuracy ranging from 82% (xanthosine) to 98% (2'-deoxyuridine), irrespective of their age and exposure history. This indicates that metabolic biomarkers can act as robust noninvasive signatures of sublethal radiation exposure.
Resumo:
Intact cognitive abilities are fundamental for driving. Driving-relevant cognition may be affected in older drivers due to aging or cognitive impairment. The aim of this study was to investigate the effects of cognitive impairment on driving-relevant cognition in older persons. Performance in selective and divided attention, eye-hand-coordination, executive functions and the ability to regulate distance and speed of 18 older persons with CI-Group (cognitive impairment group) was compared to performance of older control group (18 age and gender-matched cognitively normal subjects) and young control group (18 gender-matched young subjects). The CI-Group showed poorer performance than the other two control groups in all cognitive tasks (significance level (p) < 0.001, effect size (partial η2) = 0.63). Differences between cognitively impaired and cognitively normal subjects were still significant after controlling for age (effect sizes from 0.14 to 0.28). Dual tasking affected performance of cognitively impaired subjects more than performance of the other two groups (p = 0.016, partial η2 = 0.14). Results show that cognitive impairment has age-independent detrimental effects on selective and divided attention, eye-hand-coordination, executive functions and the ability to regulate distance and speed. Largest effect sizes are found for reaction times in attention tasks.
Resumo:
Paper I: Corporate aging and internal resource allocation Abstract Various observers argue that established firms are at a disadvantage in pursuing new growth opportunities. In this paper, we provide systematic evidence that established firms allocate fewer resources to high-growth lines of business. However, we find no evidence of inefficient resource allocation in established firms. Redirecting resources from high-growth to low-growth lines of business does not result in lower profitability. Also, resource allocation towards new growth opportunities does not increase when managers of established firms are exposed to takeover and product market threats. Rather, it seems that conservative resource allocation strategies are driven by pressures to meet investors’ expectations. Our empirical evidence, thus, favors the hypothesis that established firms wisely choose to allocate fewer resources to new growth opportunities as external pressures force them to focus on efficiency rather than novelty (Holmström 1989). Paper II: Corporate aging and asset sales Abstract This paper asks whether divestitures are motivated by strategic considerations about the scope of the firm’s activities. Limited managerial capacity implies that exploiting core competences becomes comparatively more attractive than exploring new growth opportunities as firms mature. Divestitures help stablished firms free management time and increase the focus on core competences. The testable implication of this attention hypothesis is that established firms are the main sellers of assets, that their divestiture activity increases when managerial capacity is scarcer, that they sell non-core activities, and that they return the divestiture proceeds to the providers of capital instead of reinvesting them in the firm. We find strong empirical support for these predictions. Paper III: Corporate aging and lobbying expenditures Abstract Creative destruction forces constantly challenge established firms, especially in competitive markets. This paper asks whether corporate lobbying is a competitive weapon of established firms to counteract the decline in rents over time. We find a statistically and economically significant positive relation between firm age and lobbying expenditures. Moreover, the documented age-effect is weaker when firms have unique products or operate in concentrated product markets. To address endogeneity, we use industry distress as an exogenous nonlegislative shock to future rents and show that established firms are relatively more likely to lobby when in distress. Finally, we provide empirical evidence that corporate lobbying efforts by established firms forestall the creative destruction process. In sum, our findings suggest that corporate lobbying is a competitive weapon of established firms to retain profitability in competitive environments.
Resumo:
The association between Social Support, Health Status, and Health Services Utilization of the elderly, was explored based on the analysis of data from the Supplement on Aging to the National Health Interview Survey, 1984 (N = 11,497) using a modified framework of Aday and Andersen's Expanded Behavioral Model. The results suggested that Social Support as operationalized in this study was an independent determinant of the use of health services. The quantity of social activities and the use of community services were the two most consistent determinants across different types of health services use.^ The effects of social support on the use of health services were broken down into three components to facilitate explanations of the mechanisms through which social support operated. The Predisposing and Enabling component of Social Support had independent, although not uniform, effects on the use of health services. Only slight substitute effects of social support were detected. These included the substitution of the use of senior centers for longer stay in the hospital and the substitution of help with IADL problems for the use of formal home care services.^ The effect of financial support on the use of health services was found to be different for middle and low income populations. This differential effect was also found for the presence of intimate networks, the frequencies of interaction with children and the perceived availability of support among urban/rural, male/female and white/non-white subgroups.^ The study also suggested that the selection of appropriate Health Status measures should be based on the type of Health Services Utilization in which a researcher is interested. The level of physical function limitation and role activity limitation were the two most consistent predictors of the volume of physician visits, number of hospital days, and average length of stay in the hospital during the past year.^ Some alternative hypotheses were also raised and evaluated, when possible. The impacts of the complex sample design, the reliability and validity of the measures and other limitations of this analysis were also discussed. Finally, a revised framework was proposed and discussed based on the analysis. Some policy implications and suggestions for future study were also presented. ^
Resumo:
The effect of three different aging methods (immersion in hot water, freeze–thaw cycles and wet–dry cycles) on the mechanical properties of GRC were studied and compared. Test results showed that immersion in hot water may be an unreliable method for modified GRC formulations, with it being in probability a very harmful procedure. A new aging method, mixing freeze–thaw cycles and wet–dry cycles, seems to be the most accurate simulation of weather conditions that produce a noticeable change in GRC mechanical properties. Future work should be carried out to find a correlation between real weather and the proposed aging method.
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Adding Zn improves crop growth, increases seed yield and also positively affects nutritional quality. After Zn fertilization, there is normally a period of several years in which residual effects provide an adequate supply of Zn to successive crops. Immediately after the application of Zn sources water-soluble Zn slowly but continually decreases. Various factors, including time and moisture conditions, affect the aging process and modify the solubility of the metal in soil and therefore its availability. In previous experiments, we studied the residual effect of synthetic chelates, obtained that the amounts of potentially available Zn decreased in the second cropping year due to aging processes. The present study was undertaken to verify variations in the residual effects of applying four different synthetic Zn sources
Resumo:
El Zn es un elemento esencial para el crecimiento saludable y reproducción de plantas, animales y humanos. La deficiencia de Zn es una de las carencias de micronutrientes más extendidas en muchos cultivos, afectando a grandes extensiones de suelos en diferentes áreas agrícolas. La biofortificación agronómica de diferentes cultivos, incrementando la concentración de micronutriente Zn en la planta, es un medio para evitar la deficiencia de Zn en animales y humanos. Tradicionalmente se han utilizado fertilizantes de Zn inorgánicos, como el ZnSO4, aunque en los últimos años se están utilizado complejos de Zn como fuentes de este micronutriente, obteniéndose altas concentraciones de Zn soluble y disponible en el suelo. Sin embargo, el envejecimiento de la fuente en el suelo puede causar cambios importantes en su disponibilidad para las plantas. Cuando se añaden al suelo fuentes de Zn inorgánicas, las formas de Zn más solubles pierden actividad y extractabilidad con el paso del tiempo, transformándose a formas más estables y menos biodisponibles. En esta tesis se estudia el efecto residual de diferentes complejos de Zn de origen natural y sintético, aplicados en cultivos previos de judía y lino, bajo dos condiciones de riego distintas (por encima y por debajo de la capacidad de campo, respectivamente) y en dos suelos diferentes (ácido y calizo). Los fertilizantes fueron aplicados al cultivo previo en tres dosis diferentes (0, 5 y 10 mg Zn kg-1 suelo). El Zn fácilmente lixiviable se estimó con la extracción con BaCl2 0,1M. Bajo condiciones de humedad por encima de la capacidad de campo se obtuvieron mayores porcentajes de Zn lixiviado en el suelo calizo que en el suelo ácido. En el caso del cultivo de judía realizado en condiciones de humedad por encima de la capacidad de campo se compararon las cantidades extraídas con el Zn lixiviado real. El análisis de correlación entre el Zn fácilmente lixiviable y el estimado sólo fue válido para complejos con alta movilidad y para cada suelo por separado. Bajo condiciones de humedad por debajo de la capacidad de campo, la concentración de Zn biodisponible fácilmente lixiviable presentó correlaciones positivas y altamente significativas con la concentración de Zn disponible en el suelo. El Zn disponible se estimó con varios métodos de extracción empleados habitualmente: DTPA-TEA, DTPA-AB, Mehlich-3 y LMWOAs. Estas concentraciones fueron mayores en el suelo ácido que en el calizo. Los diferentes métodos utilizados para estimar el Zn disponible presentaron correlaciones positivas y altamente significativas entre sí. La distribución del Zn en las distintas fracciones del suelo fue estimada con diferentes extracciones secuenciales. Las extracciones secuenciales mostraron un descenso entre los dos cultivos (el anterior y el actual) en la fracción de Zn más lábil y un aumento en la concentración de Zn asociado a fracciones menos lábiles, como carbonatos, óxidos y materia orgánica. Se obtuvieron correlaciones positivas y altamente significativas entre las concentraciones de Zn asociado a las fracciones más lábiles (WSEX y WS+EXC, experimento de la judía y lino, respectivamente) y las concentraciones de Zn disponible, estimadas por los diferentes métodos. Con respecto a la planta se determinaron el rendimiento en materia seca y la concentración de Zn en planta. Se observó un aumento del rendimiento y concentraciones con el efecto residual de la dosis mayores (10 mg Zn kg-1) con respecto a la dosis inferior (5 mg Zn 12 kg-1) y de ésta con respecto a la dosis 0 (control). El incremento de la concentración de Zn en todos los tratamientos fertilizantes, respecto al control, fue mayor en el suelo ácido que en el calizo. Las concentraciones de Zn en planta indicaron que, en el suelo calizo, serían convenientes nuevas aplicaciones de Zn en posteriores cultivos para mantener unas adecuadas concentraciones en planta. Las mayores concentraciones de Zn en la planta de judía, cultivada bajo condiciones de humedad por encima de la capacidad de campo, se obtuvieron en el suelo ácido con el efecto residual del Zn-HEDTA a la dosis de 10 mg Zn kg-1 (280,87 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-DTPA-HEDTA-EDTA a la dosis de 10 mg Zn kg-1 (49,89 mg Zn kg-1). En el cultivo de lino, cultivado bajo condiciones de humedad por debajo de la capacidad de campo, las mayores concentraciones de Zn en planta ese obtuvieron con el efecto residual del Zn-AML a la dosis de 10 mg Zn kg-1 (224,75 mg Zn kg-1) y en el suelo calizo con el efecto residual del Zn-EDTA a la dosis de 10 mg Zn kg-1 (99,83 mg Zn kg-1). El Zn tomado por la planta fue determinado como combinación del rendimiento y de la concentración en planta. Bajo condiciones de humedad por encima de capacidad de campo, con lixiviación, el Zn tomado por la judía disminuyó en el cultivo actual con respecto al cultivo anterior. Sin embargo, en el cultivo de lino, bajo condiciones de humedad por debajo de la capacidad de campo, se obtuvieron cantidades de Zn tomado superiores en el cultivo actual con respecto al anterior. Esta tendencia también se observó, en ambos casos, con el porcentaje de Zn usado por la planta. Summary Zinc is essential for healthy growth and reproduction of plants, animals and humans. Zinc deficiency is one of the most widespread micronutrient deficiency in different crops, and affect different agricultural areas. Agronomic biofortification of crops produced by an increased of Zn in plant, is one way to avoid Zn deficiency in animals and humans Sources with inorganic Zn, such as ZnSO4, have been used traditionally. Although, in recent years, Zn complexes are used as sources of this micronutrient, the provide high concentrations of soluble and available Zn in soil. However, the aging of the source in the soil could cause significant changes in their availability to plants. When an inorganic source of Zn is added to soil, Zn forms more soluble and extractability lose activity over time, transforming into forms more stable and less bioavailable. This study examines the residual effect of different natural and synthetic Zn complexes on navy bean and flax crops, under two different moisture conditions (above and below field capacity, respectively) and in two different soils (acid and calcareous). Fertilizers were applied to the previous crop in three different doses (0, 5 y 10 mg Zn kg-1 soil). The easily leachable Zn was estimated by extraction with 0.1 M BaCl2. Under conditions of moisture above field capacity, the percentage of leachable Zn in the calcareous soil was higher than in acid soil. In the case of navy bean experiment, performed in moisture conditions of above field capacity, amounts extracted of easily leachable Zn were compared with the real leachable Zn. Correlation analysis between the leachable Zn and the estimate was only valid for complex with high mobility and for each soil separately. Under moisture conditions below field capacity, the concentration of bioavailable easily leachable Zn showed highly significant positive correlations with the concentration of available soil Zn. The available Zn was estimated with several commonly used extraction methods: DTPA-TEA, AB-DTPA, Mehlich-3 and LMWOAs. These concentrations were higher in acidic soil than in the calcareous. The different methods used to estimate the available Zn showed highly significant positive correlations with each other. The distribution of Zn in the different fractions of soil was estimated with different sequential extractions. The sequential extractions showed a decrease between the two crops (the previous and current) at the most labile Zn fraction and an increase in the concentration of Zn associated with the less labile fractions, such as carbonates, oxides and organic matter. A positive and highly significant correlation was obtained between the concentrations of Zn associated with more labile fractions (WSEX and WS + EXC, navy bean and flax experiments, respectively) and available Zn concentrations determined by the different methods. Dry matter yield and Zn concentration in plants were determined in plant. Yield and Zn concentration in plant were higher with the residual concentrations of the higher dose applied (10 mg Zn kg-1) than with the lower dose (5 mg Zn kg-1), also these parameters showed higher values with application of this dose than with not Zn application. The increase of Zn concentration in plant with Zn treatments, respect to the control, was greater in the acid soil than in the calcareous. The Zn concentrations in plant indicated that in the calcareous soil, new applications of Zn are desirable in subsequent crops to maintain suitable concentrations in plant. 15 The highest concentrations of Zn in navy bean plant, performed under moisture conditions above the field capacity, were obtained with the residual effect of Zn-HEDTA at the dose of 10 mg Zn kg-1 (280.87 mg Zn kg-1) in the acid soil, and with the residual effect of Zn- DTPA-HEDTA-EDTA at a dose of 10 mg Zn kg-1 (49.89 mg Zn kg-1) in the calcareous soil. In the flax crop, performed under moisture conditions below field capacity, the highest Zn concentrations in plant were obtained with the residual effect of Zn-AML at the dose of 10 mg Zn kg-1 (224.75 Zn mg kg-1) and with the residual effect of Zn-EDTA at a dose of 10 mg Zn kg-1 (99.83 mg Zn kg-1) in the calcareous soil. The Zn uptake was determined as a combination of yield and Zn concentration in plant. Under moisture conditions above field capacity, with leaching, Zn uptake by navy bean decreased in the current crop, respect to the previous crop. However, in the flax crop, under moisture conditions below field capacity, Zn uptake was higher in the current crop than in the previous. This trend is also observed in both cases, with the percentage of Zn used by the plant
Resumo:
A progressive decline in muscle performance in the rapidly expanding aging population is causing a dramatic increase in disability and health care costs. A decrease in muscle endurance capacity due to mitochondrial decay likely contributes to this decline in muscle performance. We developed a novel stable isotope technique to measure in vivo rates of mitochondrial protein synthesis in human skeletal muscle using needle biopsy samples and applied this technique to elucidate a potential mechanism for the age-related decline in the mitochondrial content and function of skeletal muscle. The fractional rate of muscle mitochondrial protein synthesis in young humans (24 ± 1 year) was 0.081 ± 0.004%·h−1, and this rate declined to 0.047 ± 0.005%·h−1 by middle age (54 ± 1 year; P < 0.01). No further decline in the rate of mitochondrial protein synthesis (0.051 ± 0.004%·h−1) occurred with advancing age (73 ± 2 years). The mitochondrial synthesis rate was about 95% higher than that of mixed protein in the young, whereas it was approximately 35% higher in the middle-aged and elderly subjects. In addition, decreasing activities of mitochondrial enzymes were observed in muscle homogenates (cytochrome c oxidase and citrate synthase) and in isolated mitochondria (citrate synthase) with increasing age, indicating declines in muscle oxidative capacity and mitochondrial function, respectively. The decrease in the rates of mitochondrial protein synthesis is likely to be responsible for this decline in muscle oxidative capacity and mitochondrial function. These changes in muscle mitochondrial protein metabolism may contribute to the age-related decline in aerobic capacity and muscle performance.
Resumo:
Classical eyeblink conditioning is a well-characterized model paradigm that engages the septohippocampal cholinergic system. This form of associative learning is impaired in normal aging and severely disrupted in Alzheimer's disease (AD). Some nicotinic cholinergic receptor subtypes are lost in AD, making the use of nicotinic allosterically potentiating ligands a promising therapeutic strategy. The allosterically potentiating ligand galantamine (Gal) modulates nicotinic cholinergic receptors to increase acetylcholine release as well as acting as an acetylcholinesterase (AChE) inhibitor. Gal was tested in two preclinical experiments. In Experiment 1 with 16 young and 16 older rabbits, Gal (3.0 mg/kg) was administered for 15 days during conditioning, and the drug significantly improved learning, reduced AChE levels, and increased nicotinic receptor binding. In Experiment 2, 53 retired breeder rabbits were tested over a 15-wk period in four conditions. Groups of rabbits received 0.0 (vehicle), 1.0, or 3.0 mg/kg Gal for the entire 15-wk period or 3.0 mg/kg Gal for 15 days and vehicle for the remainder of the experiment. Fifteen daily conditioning sessions and subsequent retention and relearning assessments were spaced at 1-month intervals. The dose of 3.0 mg/kg Gal ameliorated learning deficits significantly during acquisition and retention in the group receiving 3.0 mg/kg Gal continuously. Nicotinic receptor binding was significantly increased in rabbits treated for 15 days with 3.0 mg/kg Gal, and all Gal-treated rabbits had lower levels of brain AChE. The efficacy of Gal in a learning paradigm severely impaired in AD is consistent with outcomes in clinical studies.
Resumo:
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.
Resumo:
Single-gene mutations that extend lifespan provide valuable tools for the exploration of the molecular basis for age-related changes in cell and tissue function and for the pathophysiology of age-dependent diseases. We show here that mice homozygous for loss-of-function mutations at the Pit1 (Snell dwarf) locus show a >40% increase in mean and maximal longevity on the relatively long-lived (C3H/HeJ × DW/J)F1 background. Mutant dwJ/dw animals show delays in age-dependent collagen cross-linking and in six age-sensitive indices of immune system status. These findings thus demonstrate that a single gene can control maximum lifespan and the timing of both cellular and extracellular senescence in a mammal. Pituitary transplantation into dwarf mice does not reverse the lifespan effect, suggesting that the effect is not due to lowered prolactin levels. In contrast, homozygosity for the Ghrhrlit mutation, which like the Pit1dw mutation lowers plasma growth hormone levels, does lead to a significant increase in longevity. Male Snell dwarf mice, unlike calorically restricted mice, become obese and exhibit proportionately high leptin levels in old age, showing that their exceptional longevity is not simply due to alterations in adiposity per se. Further studies of the Pit1dw mutant, and the closely related, long-lived Prop-1df (Ames dwarf) mutant, should provide new insights into the hormonal regulation of senescence, longevity, and late life disease.