954 resultados para Age, 14C calibrated, CALIB 4 (Stuiver et al., 1998)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5°S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38°S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36°S appears to be best suited for turbidite paleoseismology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modern subarctic Pacific is characterized by a steep salinity-driven surface water stratification, which hampers the supply of saline and nutrient-rich deeper waters into the euphotic zone, limiting productivity. However, the strength of the halocline might have varied in the past. Here, we present diatom oxygen (d18Odiat) and silicon (d30Sidiat) stable isotope data from the open subarctic North-East (NE) Pacific (SO202-27-6; Gulf of Alaska), in combination with other proxy data (Neogloboquadrina pachydermasin d18O, biogenic opal, Ca and Fe intensities, IRD), to evaluate changes in surface water hydrography and productivity during Marine Isotope Stage (MIS) 3, characterized by millennial-scale temperature changes (Dansgaard-Oeschger (D-O) cycles) documented in Greenland ice cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four retrogressive thaw slumps (RTS) located on Herschel Island and the Yukon coast (King Point) in the western Canadian Arctic were investigated to compare the environmental, sedimentological and geochemical setting and characteristics of zones in active and stabilised slumps and at undisturbed sites. In general, the slope, sedimentology and biogeochemistry of stabilised and undisturbed zones differ, independent of their age or location. Organic carbon contents were lower in slumps than in the surrounding tundra, and the density and compaction of slump sediments were much greater. Radiocarbon dating showed that RTS were likely to have been active around 300 a BP and are undergoing a similar period of increased activity now. This cycle is thought to be controlled more by local geometry, cryostratigraphy and the rate of coastal erosion than by variation in summer temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemipelagic muds deposited during the past 5.3 cal kyr in the northern Gulf of Mexico (Orca Basin) contain seven intervals punctuated by relatively coarse siliciclastic grain-size peaks, planktonic faunal turnovers, and negative d13C excursions. We believe these episodes represent megaflood deposits reflecting historically unprecedented outfall of North American floodwater and terrigenous mud plumes into the gulf, resulting in collapse of the open-ocean pelagic ecosystem. The deposits record multidecadal episodes of high continental precipitation and large Mississippi River floods at ~4.7, 3.5, 3.0, 2.5, 2.0, 1.2, and 0.3 cal ka (500-1200-year recurrence interval). Variations in tropical plankton frequencies define submillenial warming intervals that culminate in these fluvial episodes. Strengthened tropical currents in the gulf at these times appear to have increased sea surface temperatures and associated flow of moist gulf air to the midwest. Terrestrial paleohydrologic records support the marine evidence for millennial-scale changes in recurrence of large midwest flood episodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithology, lithic petrology, planktonic foraminiferal abundances, and clastic grain sizes have been determined in a 30 m-long core recovered from the Barra Fan off northwest Scotland. The record extends back to around 45 kyr B.P., with sedimentation rates ranging between 50 and 200 cm/kyr. The abundance of ice-rafted debris indicates 16 glacimarine events, including temporal equivalents to Heinrich events 1-4. Enhanced concentrations of basaltic material derived from the British Tertiary Province suggest that the glacimarine sediments record variations in a glacial source on the Hebrides shelf margin. Glacimarine zones are separated by silty intervals with high planktonic foraminifera concentrations that reflect an interstadial circulation regime in the Rockall Trough. The results suggest that the last British Ice Sheet fluctuated with a periodicity of 2000-3000 years, in common with the Dansgaard-Oeschger climate cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e. the UK'37 index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C28 and C30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20 kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST, or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of ca. 7 °C for UK'37 and 9 °C for LDI. Minimum SSTs (10-12 °C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST towards the beginning of the Bölling period (20 °C), while UK'37-SST remains constantly low (~12 °C). The Bölling-Alleröd is characterized by a rapid increase and subsequent decrease in UK'37-SST, while the LDI-SST decrease continuously. Short-term fluctuations in UK'37-SST are probably related to availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower UK'37-derived temperature values in the eastern Alboran (by ca. 1.5-2 °C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding of the centennial-scale variability of the Brazil Current (BC) during the late Holocene is elusive because of the lack of appropriate records. Here we used the Mg/Ca and oxygen isotopic composition of planktonic foraminifera from two marine sediment cores collected at 27° S and 33° S off southeastern South America to assess the late Holocene variability in the upper water column of the BC. Our results show in phase fluctuations of up to 3 °C in sea surface temperatures (SST), and 0.8 per mil in oxygen isotopic composition of surface sea water, a proxy for relative sea surface salinity (SSS). Time-series analyses of our records indicate a cyclicity with a period of ca. 730 yr. We suggest that the observed cyclicity reflects variability in the strength of the BC associated to changes in the Atlantic meridional overturning circulation (AMOC). Positive (negative) SST and SSS anomalies are related to a strong (weak) BC and a weak (strong) AMOC. Moreover, periods of peak strength in the BC occur synchronously to a weak North Brazil Current, negative SST anomalies in the high latitudes of the North Atlantic, and positive (negative) precipitation anomalies over southeastern South America (equatorial Africa), further corroborating our hypothesis. This study shows a tight coupling between the variability of the BC and the high latitudes of the North Atlantic mediated by the AMOC even under late Holocene boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present evidence that the Holocene African monsoon system (AMS) varied in response to the eastern equatorial Atlantic sea-surface temperature (SST). Several short-term episodes of decreased moisture availability as a result of low eastern equatorial Atlantic SST are suggested by planktonic foraminiferal Mg/Ca ratios. These episodes promoted a weakening of the AMS and thus determined the timing and intensity of arid periods. Local sea-surface salinities also reveal regional patterns of precipitation in equatorial western Africa. The high eastern equatorial Atlantic SSTs occur in concert with seasonally increased insolation at low latitudes, suggesting a strong response of African monsoonal precipitation to oceanic conditions at low latitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greenland ice core records indicate that the last deglaciation (~7-21 ka) was punctuated by numerous abrupt climate reversals involving temperature changes of up to 5°C-10°C within decades. However, the cause behind many of these events is uncertain. A likely candidate may have been the input of deglacial meltwater, from the Laurentide ice sheet (LIS), to the high-latitude North Atlantic, which disrupted ocean circulation and triggered cooling. Yet the direct evidence of meltwater input for many of these events has so far remained undetected. In this study, we use the geochemistry (paired Mg/Ca-d18O) of planktonic foraminifera from a sediment core south of Iceland to reconstruct the input of freshwater to the northern North Atlantic during abrupt deglacial climate change. Our record can be placed on the same timescale as ice cores and therefore provides a direct comparison between the timing of freshwater input and climate variability. Meltwater events coincide with the onset of numerous cold intervals, including the Older Dryas (14.0 ka), two events during the Allerød (at ~13.1 and 13.6 ka), the Younger Dryas (12.9 ka), and the 8.2 ka event, supporting a causal link between these abrupt climate changes and meltwater input. During the Bølling-Allerød warm interval, we find that periods of warming are associated with an increased meltwater flux to the northern North Atlantic, which in turn induces abrupt cooling, a cessation in meltwater input, and eventual climate recovery. This implies that feedback between climate and meltwater input produced a highly variable climate. A comparison to published data sets suggests that this feedback likely included fluctuations in the southern margin of the LIS causing rerouting of LIS meltwater between southern and eastern drainage outlets, as proposed by Clark et al. (2001, doi:10.1126/science.1062517).

Relevância:

100.00% 100.00%

Publicador: