939 resultados para Active power interpolation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a technique to add flexibility in the control of power electronic converters. The power converter can function as an active power filter, as a local power source interface or perform both functions i. e. mitigate current disturbances and inject power into the grid simultaneously, configuring it as a multifunctional device. The main goal is to extract the full capability of the grid connected power electronic converter to achieve maximum benefits. To achieve this goal, the orthogonal current decomposition of the Conservative Power Theory is used. Each orthogonal current component is weighted by means of different compensation factors (k_i), which are set instantaneously and independently, in any percentage by means of the load performance factors (λ_i), providing an online flexibility in relation to compensation objectives. Finally, to validate the effectiveness and performance the proposed approach, simulations and experimental results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After a criticism on today’s model for electrical noise in resistors, we pass to use a Quantum-compliant model based on the discreteness of electrical charge in a complex Admittance. From this new model we show that carrier drift viewed as charged particle motion in response to an electric field is unlike to occur in bulk regions of Solid-State devices where carriers react as dipoles against this field. The absence of the shot noise that charges drifting in resistors should produce and the evolution of the Phase Noise with the active power existing in the resonators of L-C oscillators, are two effects added in proof for this conduction model without carrier drift where the resistance of any two-terminal device becomes discrete and has a minimum value per carrier that is the Quantum resistance RK/(2pi)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo do presente trabalho é a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo (FPO), onde existe a necessidade de se considerar as variáveis de controle associadas aos taps de transformadores em-fase e chaveamentos de bancos de capacitores e reatores shunt como variáveis discretas e existe a necessidade da limitação, e/ou até mesmo a minimização do número de ações de controle. Neste trabalho, o problema de FPO será abordado por meio de três estratégias. Na primeira proposta, o problema de FPO é modelado como um problema de Programação Não Linear com Variáveis Contínuas e Discretas (PNLCD) para a minimização de perdas ativas na transmissão; são propostas três abordagens utilizando funções de discretização para o tratamento das variáveis discretas. Na segunda proposta, considera-se que o problema de FPO, com os taps de transformadores discretos e bancos de capacitores e reatores shunts fixos, possui uma limitação no número de ações de controles; variáveis binárias associadas ao número de ações de controles são tratadas por uma função quadrática. Na terceira proposta, o problema de FPO é modelado como um problema de Otimização Multiobjetivo. O método da soma ponderada e o método ε-restrito são utilizados para modificar os problemas multiobjetivos propostos em problemas mono-objetivos. As variáveis binárias associadas às ações de controles são tratadas por duas funções, uma sigmoidal e uma polinomial. Para verificar a eficácia e a robustez dos modelos e algoritmos desenvolvidos serão realizados testes com os sistemas elétricos IEEE de 14, 30, 57, 118 e 300 barras. Todos os algoritmos e modelos foram implementados em General Algebraic Modeling System (GAMS) e os solvers CONOPT, IPOPT, KNITRO e DICOPT foram utilizados na resolução dos problemas. Os resultados obtidos confirmam que as estratégias de discretização são eficientes e as propostas de modelagem para variáveis binárias permitem encontrar soluções factíveis para os problemas envolvendo as ações de controles enquanto os solvers DICOPT e KNITRO utilizados para modelar variáveis binárias não encontram soluções.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conventional control schemes applied to Shunt Active Power Filters (SAPF) are Harmonic extractor-based strategies (HEBSs) because their effectiveness depends on how quickly and accurately the harmonic components of the nonlinear loads are identified. The SAPF can be also implemented without the use of the load harmonic extractors. In this case, the harmonic compensating term is obtained from the system active power balance. These systems can be considered as balanced-energy-based schemes (BEBSs) and their performance depends on how fast the system reaches the equilibrium state. In this case, the phase currents of the power grid are indirectly regulated by double sequence controllers with two degrees of freedom, where the internal model principle is employed to avoid reference frame transformation. Additionally the DSC controller presents robustness when the SAPF is operating under unbalanced conditions. Furthermore, SAPF implemented without harmonic detection schemes compensate simultaneously harmonic distortion and reactive power of the load. Their compensation capabilities, however, are limited by the SAPF power converter rating. Such a restriction can be minimized if the level of the reactive power correction is managed. In this work an estimation scheme for determining the filter currents is introduced to manage the compensation of reactive power. Experimental results are shown for demonstrating the performance of the proposed SAPF system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generation systems, using renewable sources, are becoming increasingly popular due to the need for increased use of electricity. Currently, renewables sources have a role to cooperate with conventional generation, due to the system limitation in delivering the required power, the need for reduction of unwanted effects from sources that use fossil fuels (pollution) and the difficulty of building new transmission and/or distribution lines. This cooperation takes place through distributed generation. Therefore, this work proposes a control strategy for the interconnection of a PV (Photovoltaic) system generation distributed with a three-phase power grid through a connection filter the type LCL. The compensation of power quality at point of common coupling (PCC) is performed ensuring that the mains supply or consume only active power and that his currents have low distorcion. Unlike traditional techniques which require schemes for harmonic detection, the technique performs the harmonic compensation without the use of this schemes, controlling the output currents of the system in an indirect way. So that there is effective control of the DC (Direct Current) bus voltage is used the robust controller mode dual DSMPI (Dual-Sliding Mode-Proportional Integral), that behaves as a sliding mode controller SM-PI (Sliding Mode-Proportional Integral) during the transition and like a conventional PI (Proportional Integral) in the steady-state. For control of current is used to repetitive control strategy, which are used double sequence controllers (DSC) tuned to the fundamental component, the fifth and seventh harmonic. The output phase current are aligned with the phase angle of the utility voltage vector obtained from the use of a SRF-PLL (Synchronous Reference Frame Phase-Locked-Loop). In order to obtain the maximum power from the PV array is used a MPPT (Maximum Power Point Tracking) algorithm without the need for adding sensors. Experimental results are presented to demonstrate the effectiveness of the proposed control system.