5 resultados para Active power interpolation
em CaltechTHESIS
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.
Resumo:
This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing the controlled interactions so as to withdraw the maximum possible vibrational energy from the primary structure to an auxiliary structure, where the energy is stored and eventually dissipated as the external excitation decreases. One of the important advantages of AIC over most conventional active control approaches is the very low external power required.
In this thesis, the AIC concept is introduced and a new AIC algorithm, termed Optimal Connection Strategy (OCS) algorithm, is proposed. The efficiency of the OCS algorithm is demonstrated and compared with two previously existing AIC algorithms, the Active Interface Damping (AID) and Active Variable Stiffness (AVS) algorithms, through idealized examples and numerical simulations of Single- and Multi-Degree-of Freedom systems under earthquake excitations. It is found that the OCS algorithm is capable of significantly reducing the story drift response of the primary structure. The effects of the mass, damping, and stiffness of the auxiliary structure on the system performance are investigated in parametric studies. Practical issues such as the sampling interval and time delay are also examined. A simple but effective predictive time delay compensation scheme is developed.
Resumo:
In the first section of this thesis, two-dimensional properties of the human eye movement control system were studied. The vertical - horizontal interaction was investigated by using a two-dimensional target motion consisting of a sinusoid in one of the directions vertical or horizontal, and low-pass filtered Gaussian random motion of variable bandwidth (and hence information content) in the orthogonal direction. It was found that the random motion reduced the efficiency of the sinusoidal tracking. However, the sinusoidal tracking was only slightly dependent on the bandwidth of the random motion. Thus the system should be thought of as consisting of two independent channels with a small amount of mutual cross-talk.
These target motions were then rotated to discover whether or not the system is capable of recognizing the two-component nature of the target motion. That is, the sinusoid was presented along an oblique line (neither vertical nor horizontal) with the random motion orthogonal to it. The system did not simply track the vertical and horizontal components of motion, but rotated its frame of reference so that its two tracking channels coincided with the directions of the two target motion components. This recognition occurred even when the two orthogonal motions were both random, but with different bandwidths.
In the second section, time delays, prediction and power spectra were examined. Time delays were calculated in response to various periodic signals, various bandwidths of narrow-band Gaussian random motions and sinusoids. It was demonstrated that prediction occurred only when the target motion was periodic, and only if the harmonic content was such that the signal was sufficiently narrow-band. It appears as if general periodic motions are split into predictive and non-predictive components.
For unpredictable motions, the relationship between the time delay and the average speed of the retinal image was linear. Based on this I proposed a model explaining the time delays for both random and periodic motions. My experiments did not prove that the system is sampled data, or that it is continuous. However, the model can be interpreted as representative of a sample data system whose sample interval is a function of the target motion.
It was shown that increasing the bandwidth of the low-pass filtered Gaussian random motion resulted in an increase of the eye movement bandwidth. Some properties of the eyeball-muscle dynamics and the extraocular muscle "active state tension" were derived.
Resumo:
Part I
The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.
Part II
Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.
Part III
We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.