992 resultados para Accounting Sciences
Resumo:
Violence in entertainment districts is a major problem across urban landscapes throughout the world. Research shows that licensed premises are the third most common location for homicides and serious assaults, accounting for one in ten fatal and nonfatal assaults. One class of interventions that aims to reduce violence in entertainment districts involves the use of civil remedies: a group of strategies that use civil or regulatory measures as legal “levers” to reduce problem behavior. One specific civil remedy used to reduce problematic behavior in entertainment districts involves manipulation of licensed premise trading hours. This article uses generalized linear models to analyze the impact of lockout legislation on recorded violent offences in two entertainment districts in the Australian state of Queensland. Our research shows that 3 a.m. lockout legislation led to a direct and significant reduction in the number of violent incidents inside licensed premises. Indeed, the lockouts cut the level of violent crime inside licensed premises by half. Despite these impressive results for the control of violence inside licensed premises, we found no evidence that the lockout had any impact on violence on streets and footpaths outside licensed premises that were the site for more than 80 percent of entertainment district violence. Overall, however, our analysis suggests that lockouts are an important mechanism that helps to control the level of violence inside licensed premises but that finely grained contextual responses to alcohol-related problems are needed rather than one-size-fits-all solutions.
Resumo:
"in a world which is experiencing unprecedented deforestation and widespread global environmental threats there is something intuitively right about planting a tree" (Future Forests (Fiji) Limited) The above quote demonstrates that even in the wake of global environmental crisis that hope still remains and that humans can still control their destiny. This opportunity to effect positive environmental change is one of the main aims of the South Pacific Stock Exchange’s (SPSE) most recent publicly listed company: Future Forest (Fiji) Limited. Incorporated in 2004 and listed on SPSE in 2011, the company is Fiji’s first large-scale commercial hardwood forest plantation and nursery. Future Forest (FF) is the only company listed on the SPSE with biological assets or “living assets.” The accounting standard for biological assets is IAS 41: Agriculture. This standard prescribes the use of fair value as the basis of valuation. While a more relevant method of valuation, the application of fair value accounting can be more costly and burdensome for companies in developing economies (White 2008). In line with the journal’s theme of agriculture, this article explores the issues, challenges and potential benefits involved in applying fair value accounting for biological assets in a developing economy such as Fiji using the case of Future Forest (Fiji) Limited.
Resumo:
Accounting education is critical and any improvements in tertiary education of accounting students should result in better prepared graduates entering the profession. This study evaluates accounting students’ learning styles and the interaction of learning styles and teaching methodologies during degree programmes. Nine classes of accounting students (648 students) spread across four years and two degree programmes were evaluated. Students self-evaluated their learning style, pre-instruction. They were then subject to two separate teaching techniques (one active and one passive) in each course. Learning styles were then re-assessed and teaching techniques evaluated. Accounting students displayed a preference for passive learning, even those far advanced in their degrees. Furthermore, when learning styles matched teaching methods used, usefulness was assessed as high but when learning styles and teaching methods differed, usefulness deteriorated. Overall, the teaching methods were deemed more effective by active rather than passive learners. The implications are significant. To maximise educational benefit for the accounting profession, student learning styles should be assessed before designing appropriate teaching methodologies. This has resource implications which would have to be considered.
Resumo:
Measuring Earth material behaviour on time scales of millions of years transcends our current capability in the laboratory. We review an alternative path considering multiscale and multiphysics approaches with quantitative structure-property relationships. This approach allows a sound basis to incorporate physical principles such as chemistry, thermodynamics, diffusion and geometry-energy relations into simulations and data assimilation on the vast range of length and time scales encountered in the Earth. We identify key length scales for Earth systems processes and find a substantial scale separation between chemical, hydrous and thermal diffusion. We propose that this allows a simplified two-scale analysis where the outputs from the micro-scale model can be used as inputs for meso-scale simulations, which then in turn becomes the micro-model for the next scale up. We present two fundamental theoretical approaches to link the scales through asymptotic homogenisation from a macroscopic thermodynamic view and percolation renormalisation from a microscopic, statistical mechanics view.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.
Resumo:
INTRODUCTION CASES For a number of years, Professor Myles McGregor-Lowndes, Frances Hannah and Anne Overell have compiled one to two page summaries of cases involving nonprofit organisations and published them on The Australian Centre for Philanthropy and Nonprofit Studies, Developing Your Organisation (DYO) website.1 You can be alerted of new case summaries as they are posted to the DYO website by subscribing to the ACPNS RSS feed or the ACPNS twitter service.2 There were some very significant cases during 2013, such as Commissioner of Taxation v Cancer & Bowel Research Association (see case notes 2.8.2 and 2.8.11), The Hunger Project case which is under appeal, but could change the face of PBI jurisprudence (see case note 2.8.7) while Home Health Pty Ltd retained the PBI status quo but might have been different if appealed (see case note 2.8.8). For sheer interest there is nothing better in my 30 odd years of reading tax and charity judgements than case involving The Study and Prevention of Psychological Diseases Foundation Incorporated (see case note 2.1.1). It even rivals some of the more bizarre cases from the US jurisdiction of which St Joseph Abbey v Castille (case note 2.10.9) is certainly ‘dead centre’. A set of cases which stand out for attention are those involving New Zealand’s Christchurch Cathedral which anyone with responsibility for heritage-listed buildings should study carefully, for implications in relation to their own circumstances. A number of cases summarised in this Almanac are working their way through the appeals process and care should be taken with their application. In addition, some of the cases are from jurisdictions outside Australia, and readers should exercise caution when considering the implications of these cases for Australian law. LEGISLATION The Almanac includes a review of major statutory amendments during 2013, which are relevant to the nonprofit sector in all Australian jurisdictions. Special thanks must go to Nathan MacDonald and the JusticeConnect team for providing legislative updates for Victoria. SPECIAL ISSUES DURING 2013 A number of legal practitioners have contributed articles on significant legal issues facing nonprofit organisations: charitable trusts giving to government entities (Alice Macdougall); workplace bullying (Tim Longwill); and privacy (James Tan and Nina Brewer). WORLD ROUND-UP Major developments from the UK and Ireland (Kerry O’Halloran), Canada (Peter Broder), New Zealand (Michael Gousmett and Susan Barker) and Jamaica (Frances Hannah) are all summarised in a review of a significant part of the common law charity jurisdictions. WHAT DOES 2014 HOLD The final section moves from looking in the rear view mirror to peering out the front windscreen to discern the reform agenda. The view from the windscreen in 2013 was of considerable reform traffic at the Commonwealth level jostling for a place in the parliamentary agenda. This year is quite different with a smaller number of vehicles ahead, but the potential for significant impact.
Resumo:
This is the first study to explore the way Excellence in Research for Australia (ERA), a research assessment exercise introduced in the Australian higher education sector in 2010, fostered the development of strategically oriented Management Accounting technologies in the form of Performance Management Systems (PMS) to achieve research excellence within an Australian university. It identifies ERA's intended and unintended consequences. While ERA enabled the creation of tighter controls in the PMS of faculties, departments and individual academics within the university, enhancing its reported research performance, the impact on academics was low job satisfaction, increased workload and a higher focus on research than teaching.
Resumo:
Until recently, sustainable development was perceived as essentially an environmental issue, relating to the integration of environmental concerns into economic decision-making. As a result, environmental considerations have been the primary focus of sustainability decision making during the economic development process for major projects, and the assessment and preservation of social and cultural systems has been arguably too limited. The practice of social impact and sustainability assessment is an established and accepted part of project planning, however, these practices are not aimed at delivering sustainability outcomes for social systems, rather they are designed to minimise ‘unsustainability’ and contribute to project approval. Currently, there exists no widely recognised standard approach for assessing social sustainability and accounting for positive externalities of existing social systems in project decision making. As a result, very different approaches are applied around the world, and even by the same organisations from one project to another. This situation is an impediment not only to generating a shared understanding of the social implications as related to major projects, but more importantly, to identifying common approaches to help improve social sustainability outcomes of proposed activities. This paper discusses the social dimension of sustainability decision making of mega-projects, and argues that to improve accountability and transparency of project outcomes it is important to understand the characteristics that make some communities more vulnerable than others to mega-project development. This paper highlights issues with current operational level approaches to social sustainability assessment at the project level, and asserts that the starting point for project planning and sustainability decision making of mega-projects needs to include the preservation, maintenance, and enhancement of existing social and cultural systems. It draws attention to the need for a scoping mechanism to systematically assess community vulnerability (or sensitivity) to major infrastructure development during the feasibility and planning stages of a project.
Resumo:
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity $D$, and the cell proliferation rate �$\lambda$. Scratch assays are a commonly-reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched and the motion of the front is monitored over a short period of time, often less than 24 hours. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Leading edge data is very convenient since, unlike other methods, it is nondestructive and does not require labeling, tracking or counting individual cells amongst the population. In this work we study short time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allows us to reliably identify $D$ and $\lambda$�. Using a naıve calibration approach where we simply scan the relevant region of the ($D$;$\lambda$�) parameter space, we show that there are many choices of $D$ and $\lambda$� for which our model produces indistinguishable short time leading edge data. Therefore, without due care, it is impossible to estimate $D$ and $\lambda$� from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information we divide the duration of the experiment into two periods, and we estimate $D$ using data from the first period, while we estimate �$\lambda$ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of $D$ and $\lamdba$� that are consistent with previously-reported values except that that our approach is fast, inexpensive, nondestructive and avoids the need for cell labeling and cell counting.
Resumo:
This paper sets out to contribute to the literature on the design and the implementation of management control systems. To this end, we question what is discussed when a management control system is to be chosen and on what decision-making eventually rests. This study rests upon an ethnomethodology of the Salvation Army’s French branch. Operating in the dual capacity of a researcher and a counsellor to management, between 2000 and 2007, we have unrestricted access to internal data revealing the backstage of management control: discussions and interactions surrounding the choosing of control devices. We contribute to understanding the arising of a need for control, the steps and process followed to decide upon a management control system, and controls in nonprofits. [Cet article vise à contribuer à la littérature sur la mise en place des systèmes de contrôle de gestion. À cette fin, nous questionnons ce qui est discuté lors du choix d’un système de contrôle et sur quoi repose in fine la décision. Cet article est fondé sur une approche ethnométhodologique de l’Armée du Salut en France permise par notre double qualité de chercheurs mais également de conseiller auprès de la direction de l’organisation entre 2000 et 2007. Un accès illimité à des données internes nous permet ainsi de mettre en lumière les aspects méconnus et invisibles du contrôle de gestion : les discussions et interactions entourant le choix d’outils. Nous contribuons à la compréhension de l’émergence du besoin de contrôle, des étapes et du processus de choix d’outils et enfin du contrôle de gestion dans une organisation à but non lucratif.]
Resumo:
Differential settlement at the bridge approach between the deck and rail track on ground is often considered as a source of challenging technical and economical problem. This caused by the sudden stiffness changes between the bridge deck and the track on ground, and changes in soil stiffness of backfill and sub-grade with soil moisture content and loading history. To minimise the negative social and economic impacts due to poor performances of railway tracks at bridge transition zones, it is important, a special attention to be given at design, construction and maintenance stages. It is critically challenging to obtain an appropriate design solution for any given site condition and most of the existing conventional design approaches are unable to address the actual on-site behaviour due to their inherent assumptions of continuity and lack of clarifying of the local effects. An evaluation of existing design techniques is considered to estimate their contributions to a potential solution for bridge transition zones. This paper analyses five different approaches: the Chinese Standard, the European Standard with three different approaches, and the Australian approach. Each design approach is used to calculate the layer thicknesses, accounting critical design features such as the train speed, the axle load, the backfill subgrade condition, and the dynamic loading response. Considering correlation between track degradation and design parameters, this paper concludes that there is still a need of an optimised design approach for bridge transition zones.
Resumo:
1. Biodiversity, water quality and ecosystem processes in streams are known to be influenced by the terrestrial landscape over a range of spatial and temporal scales. Lumped attributes (i.e. per cent land use) are often used to characterise the condition of the catchment; however, they are not spatially explicit and do not account for the disproportionate influence of land located near the stream or connected by overland flow. 2. We compared seven landscape representation metrics to determine whether accounting for the spatial proximity and hydrological effects of land use can be used to account for additional variability in indicators of stream ecosystem health. The landscape metrics included the following: a lumped metric, four inverse-distance-weighted (IDW) metrics based on distance to the stream or survey site and two modified IDW metrics that also accounted for the level of hydrologic activity (HA-IDW). Ecosystem health data were obtained from the Ecological Health Monitoring Programme in Southeast Queensland, Australia and included measures of fish, invertebrates, physicochemistry and nutrients collected during two seasons over 4 years. Linear models were fitted to the stream indicators and landscape metrics, by season, and compared using an information-theoretic approach. 3. Although no single metric was most suitable for modelling all stream indicators, lumped metrics rarely performed as well as other metric types. Metrics based on proximity to the stream (IDW and HA-IDW) were more suitable for modelling fish indicators, while the HA-IDW metric based on proximity to the survey site generally outperformed others for invertebrates, irrespective of season. There was consistent support for metrics based on proximity to the survey site (IDW or HA-IDW) for all physicochemical indicators during the dry season, while a HA-IDW metric based on proximity to the stream was suitable for five of the six physicochemical indicators in the post-wet season. Only one nutrient indicator was tested and results showed that catchment area had a significant effect on the relationship between land use metrics and algal stable isotope ratios in both seasons. 4. Spatially explicit methods of landscape representation can clearly improve the predictive ability of many empirical models currently used to study the relationship between landscape, habitat and stream condition. A comparison of different metrics may provide clues about causal pathways and mechanistic processes behind correlative relationships and could be used to target restoration efforts strategically.
Resumo:
Regional and remote communities in tropical Queensland are among Australia’s most vulnerable in the face of climate change. At the same time, these socially and economically vulnerable regions house some of Australia’s most significant biodiversity values. Past approaches to terrestrial biodiversity management have focused on tackling biophysical interventions through the use of biophysical knowledge. An equally important focus should be placed on building regional-scale community resilience if some of the worst biodiversity impacts of climate change are to be avoided or mitigated. Despite its critical need, more systemic or holistic approaches to natural resource management have been rarely trialed and tested in a structured way. Currently, most strategic interventions in improving regional community resilience are ad hoc, not theory-based and short term. Past planning approaches have not been durable, nor have they been well informed by clear indicators. Research into indicators for community resilience has been poorly integrated within adaptive planning and management cycles. This project has aimed to resolve this problem by: * Reviewing the community and social resilience and adaptive planning literature to reconceptualise an improved framework for applying community resilience concepts; * Harvesting and extending work undertaken in MTSRF Phase 1 to identifying the learnings emerging from past MTSRF research; * Distilling these findings to identify new theoretical and practical approaches to the application of community resilience in natural resource use and management; * Reconsidering the potential interplay between a region’s biophysical and social planning processes, with a focus on exploring spatial tools to communicate climate change risk and its consequent environmental, economic and social impacts, and; * Trialling new approaches to indicator development and adaptive planning to improve community resilience, using a sub-regional pilot in the Wet Tropics. In doing so, we also looked at ways to improve the use and application of relevant spatial information. Our theoretical review drew upon the community development, psychology and emergency management literature to better frame the concept of community resilience relative to aligned concepts of social resilience, vulnerability and adaptive capacity. Firstly, we consider community resilience as a concept that can be considered at a range of scales (e.g. regional, locality, communities of interest, etc.). We also consider that overall resilience at higher scales will be influenced by resilience levels at lesser scales (inclusive of the resilience of constituent institutions, families and individuals). We illustrate that, at any scale, resilience and vulnerability are not necessarily polar opposites, and that some understanding of vulnerability is important in determining resilience. We position social resilience (a concept focused on the social characteristics of communities and individuals) as an important attribute of community resilience, but one that needs to be considered alongside economic, natural resource, capacity-based and governance attributes. The findings from the review of theory and MTSRF Phase 1 projects were synthesized and refined by the wider project team. Five predominant themes were distilled from this literature, research review and an expert analysis. They include the findings that: 1. Indicators have most value within an integrated and adaptive planning context, requiring an active co-research relationship between community resilience planners, managers and researchers if real change is to be secured; 2. Indicators of community resilience form the basis for planning for social assets and the resilience of social assets is directly related the longer term resilience of natural assets. This encourages and indeed requires the explicit development and integration of social planning within a broader natural resource planning and management framework; 3. Past indicator research and application has not provided a broad picture of the key attributes of community resilience and there have been many attempts to elicit lists of “perfect” indicators that may never be useful within the time and resource limitations of real world regional planning and management. We consider that modeling resilience for proactive planning and prediction purposes requires the consideration of simple but integrated clusters of attributes; 4. Depending on time and resources available for planning and management, the combined use of well suited indicators and/or other lesser “lines of evidence” is more flexible than the pursuit of perfect indicators, and that; 5. Index-based, collaborative and participatory approaches need to be applied to the development, refinement and reporting of indicators over longer time frames. We trialed the practical application of these concepts via the establishment of a collaborative regional alliance of planners and managers involved in the development of climate change adaptation strategies across tropical Queensland (the Gulf, Wet Tropics, Cape York and Torres Strait sub-regions). A focus on the Wet Tropics as a pilot sub-region enabled other Far North Queensland sub-region’s to participate and explore the potential extension of this approach. The pilot activities included: * Further exploring ways to innovatively communicate the region’s likely climate change scenarios and possible environmental, economic and social impacts. We particularly looked at using spatial tools to overlay climate change risks to geographic communities and social vulnerabilities within those communities; * Developing a cohesive first pass of a State of the Region-style approach to reporting community resilience, inclusive of regional economic viability, community vitality, capacitybased and governance attributes. This framework integrated a literature review, expert (academic and community) and alliance-based contributions; and * Early consideration of critical strategies that need to be included in unfolding regional planning activities with Far North Queensland. The pilot assessment finds that rural, indigenous and some urban populations in the Wet Tropics are highly vulnerable and sensitive to climate change and may require substantial support to adapt and become more resilient. This assessment finds that under current conditions (i.e. if significant adaptation actions are not taken) the Wet Tropics as a whole may be seriously impacted by the most significant features of climate change and extreme climatic events. Without early and substantive action, this could result in declining social and economic wellbeing and natural resource health. Of the four attributes we consider important to understanding community resilience, the Wet Tropics region is particularly vulnerable in two areas; specifically its economic vitality and knowledge, aspirations and capacity. The third and fourth attributes, community vitality and institutional governance are relatively resilient but are vulnerable in some key respects. In regard to all four of these attributes, however, there is some emerging capacity to manage the possible shocks that may be associated with the impacts of climate change and extreme climatic events. This capacity needs to be carefully fostered and further developed to achieve broader community resilience outcomes. There is an immediate need to build individual, household, community and sectoral resilience across all four attribute groups to enable populations and communities in the Wet Tropics region to adapt in the face of climate change. Preliminary strategies of importance to improve regional community resilience have been identified. These emerging strategies also have been integrated into the emerging Regional Development Australia Roadmap, and this will ensure that effective implementation will be progressed and coordinated. They will also inform emerging strategy development to secure implementation of the FNQ 2031 Regional Plan. Of most significance in our view, this project has taken a co-research approach from the outset with explicit and direct importance and influence within the region’s formal planning and management arrangements. As such, the research: * Now forms the foundations of the first attempt at “Social Asset” planning within the Wet Tropics Regional NRM Plan review; * Is assisting Local government at regional scale to consider aspects of climate change adaptation in emerging planning scheme/community planning processes; * Has partnered the State government (via the Department of Infrastructure and Planning and Regional Managers Coordination Network Chair) in progressing the Climate Change adaptation agenda set down within the FNQ 2031 Regional Plan; * Is informing new approaches to report on community resilience within the GBRMPA Outlook reporting framework; and * Now forms the foundation for the region’s wider climate change adaptation priorities in the Regional Roadmap developed by Regional Development Australia. Through the auspices of Regional Development Australia, the outcomes of the research will now inform emerging negotiations concerning a wider package of climate change adaptation priorities with State and Federal governments. Next stage research priorities are also being developed to enable an ongoing alliance between researchers and the region’s climate change response.
Resumo:
We consider the problem of combining opinions from different experts in an explicitly model-based way to construct a valid subjective prior in a Bayesian statistical approach. We propose a generic approach by considering a hierarchical model accounting for various sources of variation as well as accounting for potential dependence between experts. We apply this approach to two problems. The first problem deals with a food risk assessment problem involving modelling dose-response for Listeria monocytogenes contamination of mice. Two hierarchical levels of variation are considered (between and within experts) with a complex mathematical situation due to the use of an indirect probit regression. The second concerns the time taken by PhD students to submit their thesis in a particular school. It illustrates a complex situation where three hierarchical levels of variation are modelled but with a simpler underlying probability distribution (log-Normal).