247 resultados para ACCURACIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to develop equations to predict retail product and fat trim (weights and percentages) for Nellore (Bos indicus) cattle. Live ultrasound measurements of the longissimus muscle area, backfat thickness at the 12th rib and rump fat depth and shrunk body weight were obtained from 218 Nellore steers to predict weights and percentages of carcass retail product, pistola retail product and fat trimmings. After slaughter, carcasses were deboned and weighed and percentages of retail cuts were obtained directly. Measurements taken directly in the carcasses explained 97% and 36% of variation in carcass retail product weight and percentage, and 94% and 36% of variation in pistola retail weight and percentage, respectively. Live measurements explained 93% of carcass retail product weight and 39% of carcass retail product percentage. Lower accuracies were observed for pistola retail product weight (R-2=0.87) and percentage (R-2=0.33). Accuracies for fat trimmings weight and percentage were 79% and 55%, respectively. Ultrasound rump fat thickness showed greater correlations with retail product and fat trimmings (weights and percentages) when compared with ultrasound backfat thickness. The weight and percentage of retail products and of trimmable fat can be estimated in Nellore steers from live animal measurements, with similar accuracy to equations developed based on carcass measurements obtained at slaughter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the simultaneous quantification of lycopene, beta-carotene, retinol and alpha-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20 degrees C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra-and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20 degrees C. A significant decrease of lycopene, beta-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the simultaneous quantification of lycopene, β-carotene, retinol and α-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20°C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra- and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20°C. A significant decrease of lycopene, β-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN]In this work an experimental study about the capability of the LBP, HOG descriptors and color for clothing attribute classification is presented. Two different variants of the LBP descriptor are considered, the original LBP and the uniform LBP. Two classifiers, Linear SVM and Random Forest, have been included in the comparison because they have been frequently used in clothing attributes classification. The experiments are carried out with a public available dataset, the clothing attribute dataset, that has 26 attributes in total. The obtained accuracies are over 75% in most cases, reaching 80% for the necktie or sleeve length attributes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Auf einer drei Anbauperioden umfassenden Ground Truth Datenbasis wird der Informationsgehalt multitemporaler ERS-1/-2 Synthetic Aperture Radar (SAR) Daten zur Erfassung der Arteninventare und des Zustandes landwirtschaftlich genutzter Böden und Vegetation in Agrarregionen Bayerns evaluiert.Dazu wird ein für Radardaten angepaßtes, multitemporales, auf landwirtschaftlichen Schlägen beruhendes Klassifizierungsverfahren ausgearbeitet, das auf bildstatistischen Parametern der ERS-Zeitreihen beruht. Als überwachte Klassifizierungsverfahren wird vergleichend der Maximum-Likelihood-Klassifikator und ein Neuronales-Backpropagation-Netz eingesetzt. Die auf Radarbildkanälen beruhenden Gesamtgenauigkeiten variieren zwischen 75 und 85%. Darüber hinaus wird gezeigt, daß die interferometrische Kohärenz und die Kombination mit Bildkanälen optischer Sensoren (Landsat-TM, SPOT-PAN und IRS-1C-PAN) zur Verbesserung der Klassifizierung beitragen. Gleichermaßen können die Klassifizierungsergebnisse durch eine vorgeschaltete Grobsegmentierung des Untersuchungsgebietes in naturräumlich homogene Raumeinheiten verbessert werden. Über die Landnutzungsklassifizierung hinaus, werden weitere bio- und bodenphysikalische Parameter aus den SAR-Daten anhand von Regressionsmodellen abgeleitet. Im Mittelpunkt stehen die Paramter oberflächennahen Bodenfeuchte vegetationsfreier/-armer Flächen sowie die Biomasse landwirtschaftlicher Kulturen. Die Ergebnisse zeigen, daß mit ERS-1/-2 SAR-Daten eine Messung der Bodenfeuchte möglich ist, wenn Informationen zur Bodenrauhigkeit vorliegen. Hinsichtlich der biophysikalischen Parameter sind signifikante Zusammenhänge zwischen der Frisch- bzw. Trockenmasse des Vegetationsbestandes verschiedener Getreide und dem Radarsignal nachweisbar. Die Biomasse-Informationen können zur Korrektur von Wachstumsmodellen genutzt werden und dazu beitragen, die Genauigkeit von Ertragsschätzungen zu steigern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ion traps have been established as a powerful tool for ion cooling and laser spectroscopy experiments since a long time ago. SpecTrap, one of the precision experiments associated to the HITRAP facility at GSI, is implementing a Penning trap for studies of large bunches of externally produced highly charged ions. The extremely strong electric and magnetic fields that exist around the nuclei of heavy elements drastically change their electronic properties, such as energy level spacings and radiative lifetimes. The electrons can therefore serve as sensitive probes for nuclear properties such as size, magnetic moment and spatial distribution of charge and magnetization. The energies of forbidden fine and hyperfine structure transitions in such ions strongly depend on the nuclear charge and shift from the microwave domain into the optical domain. Thus, they become accessible for laser spectroscopy and its potentially high accuracy. A number of such measurements has been performed in storage rings and electron beam ion traps and yielded results with relative accuracies in the 10

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Innerhalb des Untersuchungsgebiets Schleswig-Holstein wurden 39.712 topographische Hohlformen detektiert. Genutzt wurden dazu ESRI ArcMap 9.3 und 10.0. Der Datenaufbereitung folgten weitere Kalkulationen in MATLAB R2010b. Jedes Objekt wurde räumlich mit seinen individuellen Eigenschaften verschnitten. Dazu gehörten Fläche, Umfang, Koordinaten (Zentroide), Tiefe und maximale Tiefe der Hohlform und Formfaktoren wie Rundheit, Konvexität und Elongation. Ziel der vorgestellten Methoden war die Beantwortung von drei Fragestellungen: Sind negative Landformen dazu geeignet Landschaftseinheiten und Eisvorstöße zu unterscheiden und zu bestimmen? Existiert eine Kopplung von Depressionen an der rezenten Topographie zu geologischen Tiefenstrukturen? Können Senken unterschiedlicher Entstehung anhand ihrer Formcharakteristik unterteilt werden? Die vorgenommene Klassifikation der großen Landschaftseinheiten basiert auf der Annahme, dass sowohl Jungmoränengebiete, ihre Vorflächen als auch Altmoränengebiete durch charakteristische, abflusslose Hohlformen, wie Toteislöcher, Seen, etc. abgegrenzt werden können. Normalerweise sind solche Depressionen in der Natur eher selten, werden jedoch für ehemalige Glaziallandschaften als typisch erachtet. Ziel war es, die geologischen Haupteinheiten, Eisvorstöße und Moränengebiete der letzten Vereisungen zu differenzieren. Zur Bearbeitung wurde ein Detektionsnetz verwendet, das auf quadratischen Zellen beruht. Die Ergebnisse zeigen, dass durch die alleinige Nutzung von Depressionen zur Klassifizierung von Landschaftseinheiten Gesamtgenauigkeiten von bis zu 71,4% erreicht werden können. Das bedeutet, dass drei von vier Detektionszellen korrekt zugeordnet werden können. Jungmoränen, Altmoränen, periglazialeVorflächen und holozäne Bereiche können mit Hilfe der Hohlformen mit großer Sicherheit voneinander unterschieden und korrekt zugeordnet werden. Dies zeigt, dass für die jeweiligen Einheiten tatsächlich bestimmte Senkenformen typisch sind. Die im ersten Schritt detektierten Senken wurden räumlich mit weiterreichenden geologischen Informationen verschnitten, um zu untersuchen, inwieweit natürliche Depressionen nur glazial entstanden sind oder ob ihre Ausprägung auch mit tiefengeologischen Strukturen in Zusammenhang steht. 25.349 (63,88%) aller Senken sind kleiner als 10.000 m² und liegen in Jungmoränengebieten und können vermutlich auf glaziale und periglaziale Einflüsse zurückgeführt werden. 2.424 Depressionen liegen innerhalb der Gebiete subglazialer Rinnen. 1.529 detektierte Hohlformen liegen innerhalb von Subsidenzgebieten, von denen 1.033 innerhalb der Marschländer im Westen verortet sind. 919 große Strukturen über 1 km Größe entlang der Nordsee sind unter anderem besonders gut mit Kompaktionsbereichen elsterzeitlicher Rinnen zu homologisieren.344 dieser Hohlformen sind zudem mit Tunneltälern im Untergrund assoziiert. Diese Parallelität von Depressionen und den teils über 100 m tiefen Tunneltälern kann auf Sedimentkompaktion zurückgeführt werden. Ein Zusammenhang mit der Zersetzung postglazialen, organischen Materials ist ebenfalls denkbar. Darüber hinaus wurden in einer Distanz von 10 km um die miozän aktiven Flanken des Glückstadt-Grabens negative Landformen detektiert, die Verbindungen zu oberflächennahen Störungsstrukturen zeigen. Dies ist ein Anzeichen für Grabenaktivität während und gegen Ende der Vereisung und während des Holozäns. Viele dieser störungsbezogenen Senken sind auch mit Tunneltälern assoziiert. Entsprechend werden drei zusammenspielende Prozesse identifiziert, die mit der Entstehung der Hohlformen in Verbindung gebracht werden können. Eine mögliche Interpretation ist, dass die östliche Flanke des Glückstadt-Grabens auf die Auflast des elsterzeitlichen Eisschilds reagierte, während sich subglazial zeitgleich Entwässerungsrinnen entlang der Schwächezonen ausbildeten. Diese wurden in den Warmzeiten größtenteils durch Torf und unverfestigte Sedimente verfüllt. Die Gletschervorstöße der späten Weichselzeit aktivierten erneut die Flanken und zusätzlich wurde das Lockermaterial exariert, wodurch große Seen, wie z. B. der Große Plöner See entstanden sind. Insgesamt konnten 29 große Depressionen größer oder gleich 5 km in Schleswig-Holstein identifiziert werden, die zumindest teilweise mit Beckensubsidenz und Aktivität der Grabenflanken verbunden sind, bzw. sogar auf diese zurückgehen.Die letzte Teilstudie befasste sich mit der Differenzierung von Senken nach deren potentieller Genese sowie der Unterscheidung natürlicher von künstlichen Hohlformen. Dazu wurde ein DEM für einen Bereich im Norden Niedersachsens verwendet, das eine Gesamtgröße von 252 km² abdeckt. Die Ergebnisse zeigen, dass glazial entstandene Depressionen gute Rundheitswerte aufweisen und auch Elongation und Exzentrizität eher kompakte Formen anzeigen. Lineare negative Strukturen sind oft Flüsse oder Altarme. Sie können als holozäne Strukturen identifiziert werden. Im Gegensatz zu den potentiell natürlichen Senkenformen sind künstlich geschaffene Depressionen eher eckig oder ungleichmäßig und tendieren meist nicht zu kompakten Formen. Drei Hauptklassen topographischer Depressionen konnten identifiziert und voneinander abgegrenzt werden: Potentiell glaziale Senken (Toteisformen), Flüsse, Seiten- und Altarme sowie künstliche Senken. Die Methode der Senkenklassifikation nach Formparametern ist ein sinnvolles Instrument, um verschiedene Typen unterscheiden zu können und um bei geologischen Fragestellungen künstliche Senken bereits vor der Verarbeitung auszuschließen. Jedoch zeigte sich, dass die Ergebnisse im Wesentlichen von der Auflösung des entsprechenden Höhenmodells abhängen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of CCSD(T) single-point calculations on MP4(SDQ) geometries and the W1 model chemistry method have been used to calculate ΔH° and ΔG° values for the deprotonation of 17 gas-phase reactions where the experimental values have reported accuracies within 1 kcal/mol. These values have been compared with previous calculations using the G3 and CBS model chemistries and two DFT methods. The most accurate CCSD(T) method uses the aug-cc-pVQZ basis set. Extrapolation of the aug-cc-pVTZ and aug-cc-pVQZ results yields the most accurate agreement with experiment, with a standard deviation of 0.58 kcal/mol for ΔG° and 0.70 kcal/mol for ΔH°. Standard deviations from experiment for ΔG° and ΔH° for the W1 method are 0.95 and 0.83 kcal/mol, respectively. The G3 and CBS-APNO results are competitive with W1 and are much less expensive. Any of the model chemistry methods or the CCSD(T)/aug-cc-pVQZ method can serve as a valuable check on the accuracy of experimental data reported in the National Institutes of Standards and Technology (NIST) database.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In clinical diagnostics, it is of outmost importance to correctly identify the source of a metastatic tumor, especially if no apparent primary tumor is present. Tissue-based proteomics might allow correct tumor classification. As a result, we performed MALDI imaging to generate proteomic signatures for different tumors. These signatures were used to classify common cancer types. At first, a cohort comprised of tissue samples from six adenocarcinoma entities located at different organ sites (esophagus, breast, colon, liver, stomach, thyroid gland, n = 171) was classified using two algorithms for a training and test set. For the test set, Support Vector Machine and Random Forest yielded overall accuracies of 82.74 and 81.18%, respectively. Then, colon cancer liver metastasis samples (n = 19) were introduced into the classification. The liver metastasis samples could be discriminated with high accuracy from primary tumors of colon cancer and hepatocellular carcinoma. Additionally, colon cancer liver metastasis samples could be successfully classified by using colon cancer primary tumor samples for the training of the classifier. These findings demonstrate that MALDI imaging-derived proteomic classifiers can discriminate between different tumor types at different organ sites and in the same site.