999 resultados para 956.62


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em História - FCLAS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boletim elaborado pela Assessoria de Comunicação e Imprensa da Reitoria da UNESP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revista elaborada pela Assessoria de Comunicação e Imprensa da Reitoria da UNESP

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vector mesons may be photoproduced in relativistic heavy-ion collisions when a virtual photon emitted by one nucleus scatters from the other nucleus, emerging as a vector meson. The STAR Collaboration has previously presented measurements of coherent rho(0) photoproduction at center of mass energies of 130 GeV and 200 GeV in AuAu collisions. Here, we present a measurement of the cross section at 62.4 GeV; we find that the cross section for coherent rho(0) photoproduction with nuclear breakup is 10.5 +/- 1.5 +/- 1.6mb at 62.4 GeV. The cross-section ratio between 200 GeV and 62.4 GeV is 4.4 +/- 0.6, less than is predicted by most theoretical models. It is, however, proportionally much larger than the previously observed 15% +/- 55% increase between 130 GeV and 200 GeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity eta and azimuth phi for charged particles from Au-Au collisions at root s(NN) = 62 and 200 GeV with transverse momentum p(t) >= 0.15 GeV/c, vertical bar eta vertical bar <= 1, and 2 pi in azimuth. Observed correlations include a same-side (relative azimuth <pi/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the eta width of the same-side 2D peak also increases rapidly (eta elongation), and the phi width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in HIJING, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here. DOI: 10.1103/PhysRevC.86.064902

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present measurements of the J/psi invariant yields in root s(NN) = 39 and 62.4 GeV Au + Au collisions at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au + Au collisions (R-CP) and for various centrality selections in Au + Au relative to scaled p + p cross sections obtained from other measurements (R-AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement. DOI: 10.1103/PhysRevC.86.064901

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants nu(2) (nu(2){2} and nu(2){4}) for Au + Au and Cu + Cu collisions at center-of-mass energies root S-NN = 62.4 and 200 GeV. The difference between nu(2){2}(2) and nu(2){4}(2) is related to nu(2) fluctuations (sigma(nu 2)) and nonflow (delta(2)). We present an upper limit to sigma(nu 2)/nu 2. Following the assumption that eccentricity fluctuations sigma(epsilon) dominate nu(2) fluctuations nu(2)/sigma nu(2) approximate to epsilon/sigma epsilon we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with nu(2){2} and nu(2){4}. We also present results on the ratio of nu(2) to eccentricity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p + p collisions at root s = 62.4 GeV are presented. The PHENIX measurement of the cross sections for 1.0 < p(T) < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong-coupling constant, alpha(s). Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 less than or similar to x(gluon) less than or similar to 0.2, is consistent with recent global parametrizations disfavoring large gluon polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.