906 resultados para 860[82]-2.09
Resumo:
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep mathematical knowledge. The method of analysis involved the establishment of a set of specific curriculum goals and associated indicators, based on research into the teaching and learning of a particular field within the mathematics curriculum, namely proportion and proportional reasoning. Topic selection was due to its pervasive nature throughout the school mathematics curriculum at this level. As a result of this study, it was found that the five textbook series examined provided limited support for the development of multiplicative structures required for proportional reasoning, and hence would not serve well the development of deep learning of mathematics. The study demonstrated a method that could be applied to the analysis of junior secondary mathematics in many parts of the world.
Resumo:
Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods
Resumo:
High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.
Resumo:
NCOA3 is a known low to moderate-risk breast cancer susceptibility gene, amplified in 5–10% and over expressed in about 60% of breast tumours. Additionally, this over expression is associated with Tamoxifen resistance and poor prognosis. Previously, two variants of NCOA3, 1758G > C and 2880A > G have been associated with breast cancer in two independent populations. Here we assessed the influence of the two NCOA3 variants on breast cancer risk by genotyping an Australian case–control study population. 172 cases and 178 controls were successfully genotyped for the 1758G > C variant and 186 cases and 182 controls were successfully genotyped for the 2880A > G variant using high-resolution melt analysis (HRM). The genotypes of the 1758G > C variant were validated by sequencing. χ2 tests were performed to determine if significant differences exist in the genotype and allele frequencies between the cases and controls. χ2 analysis returned no statistically significant difference (p > 0.05) for genotype frequencies between cases and controls for 1758G > C (χ2 = 0.97, p = 0.6158) or 2880A > G (χ2 = 2.09, p = 0.3516). Similarly, no statistical difference was observed for allele frequencies for 1758G > C (χ2 = 0.07, p = 0.7867) or 2880A > G (χ2 = 0.04, p = 0.8365). Haplotype analysis of the two SNPs also showed no difference between the cases and the controls (p = 0.9585). Our findings in an Australian Caucasian population composed of breast cancer sufferers and an age matched control population did not support the findings of previous studies demonstrating that these markers play a significant role in breast cancer susceptibility. Here, no significant difference was detected between breast cancer patients and healthy matched controls by either the genotype or allele frequencies for the investigated variants (all p ≥ 0.05). While an association of the two variants and breast cancer was not detected in our case–control study population, exploring these variants in a larger population of the same kind may obtain results in concordance with previous studies. Given the importance of NCOA3 and its involvement in biological processes involved in breast cancer and the possible implications variants of the gene could have on the response to Tamoxifen therapy, NCOA3 remains a candidate for further investigations.
Resumo:
The aim of this work was to investigate changes in particle number concentration (PNC) within naturally ventilated primary school classrooms arising from local sources either within or adjacent to the classrooms. We quantify the rate at which ultrafine particles were emitted either from printing, grilling, heating or cleaning activities and the rate at which the particles were removed by both deposition and air exchange processes. At each of 25 schools in Brisbane, Australia, two weeks of measurements of PNC and CO2 were taken both outdoors and in the two classrooms. Bayesian regression modelling was employed in order to estimate the relevant rates and analyse the relationship between air exchange rate (AER), particle infiltration and the deposition rates of particle generated from indoor activities in the classrooms. During schooling hours, grilling events at the school tuckshop as well as heating and printing in the classrooms led to indoor PNCs being elevated by a factor of more than four, with emission rates of (2.51 ± 0.25) x 1011 p min-1, (8.99 ± 6.70) x 1011 p min-1 and (5.17 ± 2.00) x 1011 p min-1, respectively. During non-school hours, cleaning events elevated indoor PNC by a factor of above five, with an average emission rate of (2.09 ± 6.30) x 1011 p min-1. Particles were removed by both air exchange and deposition; chiefly by ventilation when AER > 0.7 h-1 and by deposition when AER < 0.7 h-1.
Resumo:
This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.
Resumo:
Background: Current blood based diagnostic assays to detect heart failure (HF) have large intra-individual and inter-individual variations which have made it difficult to determine whether the changes in the analyte levels reflect an actual change in disease activity. Human saliva mirrors the body's health and well being and similar to 20% of proteins that are present in blood are also found in saliva. Saliva has numerous advantages over blood as a diagnostic fluid which allows for a non-invasive, simple, and safe sample collection. The aim of our study was to develop an immunoassay to detect NT-proBNP in saliva and to determine if there is a correlation with blood levels. Methods: Saliva samples were collected from healthy volunteers (n = 40) who had no underlying heart conditions and HF patients (n = 45) at rest. Samples were stored at -80 degrees C until analysis. A customised homogeneous sandwich AlphaLISA((R)) immunoassay was used to quantify NT-proBNP levels in saliva. Results: Our NT-proBNP immunoassay was validated against a commercial Roche assay on plasma samples collected from HF patients (n = 37) and the correlation was r(2) = 0.78 (p<0.01, y = 1.705 x +1910.8). The median salivary NT-proBNP levels in the healthy and HF participants were <16 pg/mL and 76.8 pg/mL, respectively. The salivary NT-proBNP immunoassay showed a clinical sensitivity of 82.2% and specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3%, with an overall diagnostic accuracy of 90.6%. Conclusion: We have firstly demonstrated that NT-proBNP can be detected in saliva and that the levels were higher in heart failure patients compared with healthy control subjects. Further studies will be needed to demonstrate the clinical relevance of salivary NT-proBNP in unselected, previously undiagnosed populations.
Resumo:
We implemented least absolute shrinkage and selection operator (LASSO) regression to evaluate gene effects in genome-wide association studies (GWAS) of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4, and CDH13. The top genes we identified with this method also displayed significant and widespread post hoc effects on voxelwise, tensor-based morphometry (TBM) maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2.We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years). Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.
Resumo:
Helicobacter pylorin (helikobakteeri) tartunta saadaan yleensä lapsena ja tauti jää tavallisesti pysyväksi ilman täsmähoitoa. Onnistunut hoito parantaa pysyvästi helikobakteerista aiheutuvan mahan haavataudin ja näyttää ehkäisevän mahalaukun pahanlaatuisten muutosten kehittymistä. Aloitimme Vammalassa terveyskeskuksessa toteutetun kansainvälisesti ainutlaatuisen väestöpohjaisen helikobakteeritulehduksen seulonta- ja hoito-ohjelman pilottitutkimuksella 1994. 1996 kaikki 15-40-vuotiaat ja 1997-2000 15- ja 45-vuotiaat vammalalaiset kutsuttiin verinäyteseulontaan. Yhteensä 4626 henkilöä (75% kutsutuista) osallistui seulontaan. Vasta-ainepositiivisille tarjottiin helikobakteeritulehduksen lopettava lääkekuuri. Toiminnan seurauksena helikobakteeritulehduksen esiintyvyyden laskettiin vähentyneen 12%:sta 4%:iin 15-40-vuotiaiden ikäryhmässä. Tutkimme myös helikobakteerivasta-ainepositiivisten ja -negatiivisten eroja sekä helikobakteeritulehduksen riskitekijöitä kyselytutkimuksella. Lapsuudenkodin asumisahtauden, äidin matalan koulutusasteen, tupakoinnin, alkoholinkäytön, huonojen asunto-olojen ja ylävatsavaivoista johtuvien sairauslomien todettiin liittyvän helikobakteeritulehdukseen monimuuttuja-analyysissa. Tutkimme seulontaohjelmassa käyttämiemme IgG- ja IgA-luokan helikobakteeri-vasta-ainetestien luotettavuutta eri ikäryhmissä ottaen huomioon atrofisen gastriitin esiintyvyyden. 561 kliinisin perustein gastroskopoidun potilaan aineistossa IgG-testi osoittautui erittäin herkäksi kaikissa ikäryhmissä (99%). Tarkkuus oli myös vanhemmissa ikäryhmissä hyvä (97-93%), kun atrofista gastriittia sairastavat suljettiin pois. IgA- ja CagA-helikobakteerivasta-aineiden on todettu liittyvän lisääntyneeseen mahahaava- ja mahasyöpäriskiin. Analysoimme 560 henkilön pariseeruminäytteet, jotka oli otettu kahden vuosikymmenen välein, ja totesimme, että IgA-vasta-aineiden esiintyvyyden lisääntyyminen iän myötä johtuu paitsi syntymäajankohdasta ja uusista infektioista myös IgA-vasta-ainetasojen kohoamisesta helikobakteeritulehduksen aikana. Selvitimme myös CagA-vasta-ainetasojen muuttumista analysoimalla seeruminäytteet, jotka oli otettu kahden vuosikymmenen välein. Totesimme, että samanaikaisesti kun helikobakteerin esiintyvyys väestössä on alentunut, erityisesti CagA-positiiviset infektiot ovat vähentyneet. Tutkimuksemme osoittaa, että Suomessa terveyskeskuksen yhteydessä voidaan toteuttaa näin laajamittainen seulonta- ja hoito-ohjelma, johon suomalaiset osallistuvat aktiivisesti. Nähtäväksi jää, kuinka paljon ohjelma kykeni vähentämään helikobakteeritulehdukseen liittyviä myöhäisseuraamuksia.
Resumo:
Endometriosis is a common gynecological disease that affects up to 10% of women in their reproductive years. It causes pelvic pain, severe dysmenorrhea, and subfertility. The disease is defined as the presence of tissue resembling endometrium in sites outside the uterus. Its cause remains uncertain despite >50 years of hypothesis-driven research, and thus the therapeutic options are limited. Disease predisposition is inherited as a complex genetic trait, which provides an alternative route to understanding the disease. We seek to identify susceptibility loci, using a positional-cloning approach that starts with linkage analysis to identify genomic regions likely to harbor these genes. We conducted a linkage study of 1,176 families (931 from an Australian group and 245 from a U.K. group), each with at least two members--mainly affected sister pairs--with surgically diagnosed disease. We have identified a region of significant linkage on chromosome 10q26 (maximum LOD score [MLS] of 3.09; genomewide P = .047) and another region of suggestive linkage on chromosome 20p13 (MLS = 2.09). Minor peaks (with MLS > 1.0) were found on chromosomes 2, 6, 7, 8, 12, 14, 15, and 17. This is the first report of linkage to a major locus for endometriosis. The findings will facilitate discovery of novel positional genetic variants that influence the risk of developing this debilitating disease. Greater understanding of the aberrant cellular and molecular mechanisms involved in the etiology and pathophysiology of endometriosis should lead to better diagnostic methods and targeted treatments.
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
Water availability is a major limiting factor for crop production, making drought adaptation and its many component traits a desirable attribute of plant cultivars. Previous studies in cereal crops indicate that root traits expressed at early plant developmental stages, such as seminal root angle and root number, are associated with water extraction at different depths. Here, we conducted the first study to map seminal root traits in barley (Hordeum vulgare L.). Using a recently developed high-throughput phenotyping method, a panel of 30 barley genotypes and a doubled-haploid (DH) population (ND24260 × 'Flagship') comprising 330 lines genotyped with diversity array technology (DArT) markers were evaluated for seminal root angle (deviation from vertical) and root number under controlled environmental conditions. A high degree of phenotypic variation was observed in the panel of 30 genotypes: 13.5 to 82.2 and 3.6 to 6.9° for root angle and root number, respectively. A similar range was observed in the DH population: 16.4 to 70.5 and 3.6 to 6.5° for root angle and number, respectively. Seven quantitative trait loci (QTL) for seminal root traits (root angle, two QTL; root number, five QTL) were detected in the DH population. A major QTL influencing both root angle and root number (RAQ2/RNQ4) was positioned on chromosome 5HL. Across-species analysis identified 10 common genes underlying root trait QTL in barley, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench]. Here, we provide insight into seminal root phenotypes and provide a first look at the genetics controlling these traits in barley.
Resumo:
Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.
Resumo:
We investigate the influence of viscoelastic nature of the adhesive on the intermittent peel front dynamics by extending a recently introduced model for peeling of an adhesive tape. As time and rate-dependent deformation of the adhesives are measured in stationary conditions, a crucial step in incorporating the viscoelastic effects applicable to unstable intermittent peel dynamics is the introduction of a dynamization scheme that eliminates the explicit time dependence in terms of dynamical variables. We find contrasting influences of viscoelastic contribution in different regions of tape mass, roller inertia, and pull velocity. As the model acoustic energy dissipated depends on the nature of the peel front and its dynamical evolution, the combined effect of the roller inertia and pull velocity makes the acoustic energy noisier for small tape mass and low-pull velocity while it is burstlike for low-tape mass, intermediate values of the roller inertia and high-pull velocity. The changes are quantified by calculating the largest Lyapunov exponent and analyzing the statistical distributions of the amplitudes and durations of the model acoustic energy signals. Both single and two stage power-law distributions are observed. Scaling relations between the exponents are derived which show that the exponents corresponding to large values of event sizes and durations are completely determined by those for small values. Th scaling relations are found to be satisfied in all cases studied. Interestingly, we find only five types of model acoustic emission signals among multitude of possibilities of the peel front configurations.