996 resultados para 610103 Air Force


Relevância:

90.00% 90.00%

Publicador:

Resumo:

"June 1975."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"AEDC-TR-67-65."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"April 1996."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"April 1996."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"August 1997."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"A translation."

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"The research was conducted by the Propellants Division of Amoco Chemicals Corporation of Seymour, Indiana, under Contract no. AF 33 (657)-11120."

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Load bearing Light Gauge Steel Frame (LSF) walls made of cold-formed steel studs and tracks are commonly used in residential and commercial buildings. Fire safety of these walls is essential to minimize the damage caused by fire related accidents. Past investigations on the fire performance of load bearing LSF wall systems have been limited to LSF walls made of conventional lipped channel section studs. Although structurally efficient hollow flange steel sections are available in the building industry, they are not used as LSF wall studs due to the lack of fire performance data for such walls. The hollow flange sections have torsionally rigid hollow flanges that eliminate the occurrence of local and distortional buckling to an extent, thereby increasing their structural efficiency. The weaknesses of hollow flange sections such as lower lateral distortional buckling capacity are also eliminated when they are used as studs of LSF walls as the plasterboard restraints will prevent any lateral movement. Therefore hollow flange sections can be considered as structurally more efficient studs for use in LSF wall systems. This paper reports the full scale fire tests of LSF walls made of hollow flange section studs under standard fire conditions. The frames were made of 1.6 mm thick and 150 mm deep hollow flange section studs with two closed rectangular flanges of 45 mm width x 15 mm depth. Dual plasterboards were attached on both sides of the test wall panels. The load ratio was varied and the failure times, the lateral deflections and the axial displacements of the test walls were obtained. The failure behaviour of LSF walls made of hollow flange section studs was found to be different to that of LSF walls made of conventional lipped channel section studs. The results of these fire tests show that hollow flange section studs have a higher potential in being used in load bearing LSF Walls.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire safety design of building structures has received greater attention in recent times due to continuing losses of properties and lives in fires. However, the structural behaviour of thin-walled cold-formed steel columns under fire conditions is not well understood despite the increasing use of light gauge steels in building construction. Cold-formed steel columns are often subject to local buckling effects. Therefore a series of laboratory tests of lipped and unlipped channel columns made of varying steel thicknesses and grades was undertaken at uniform elevated temperatures up to 700°C under steady state conditions. Finite element models of the tested columns were also developed, and their elastic buckling and nonlinear analysis results were compared with test results at elevated temperatures. Effects of the degradation of mechanical properties of steel with temperature were included in the finite element analyses. The use of accurately measured yield stress, elasticity modulus and stress-strain curves at elevated temperatures provided a good comparison of the ultimate loads and load-deflection curves from tests and finite element analyses. The commonly used effective width design rules and the direct strength method at ambient temperature were then used to predict the ultimate loads at elevated temperatures by using the reduced mechanical properties. By comparing these predicted ultimate loads with those from tests and finite element analyses, the accuracy of using this design approach was evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold-formed steel lipped channels are commonly used in LSF wall construction as load bearing studs with plasterboards on both sides. Under fire conditions, cold-formed thin-walled steel sections heat up quickly resulting in fast reduction in their strength and stiffness. Usually the LSF wall panels are subjected to fire from one side which will cause thermal bowing, neutral axis shift and magnification effects due to the development of non-uniform temperature distributions across the stud. This will induce an additional bending moment in the stud and hence the studs in LSF wall panels should be designed as a beam column considering both the applied axial compression load and the additional bending moment. Traditionally the fire resistance rating of these wall panels is based on approximate prescriptive methods. Very often they are limited to standard wall configurations used by the industry. Therefore a detailed research study is needed to develop fire design rules to predict the failure load and hence the failure time of LSF wall panels subject to non-uniform temperature distributions. This paper presents the details of an investigation to develop suitable fire design rules for LSF wall studs under non-uniform elevated temperature distributions. Applications of the previously developed fire design rules based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 to LSF wall studs were investigated in detail and new simplified fire design rules based on AS/NZS 4600 and Eurocode 3 Part 1.3 were proposed in the current study with suitable allowances for the interaction effects of compression and bending actions. The accuracy of the proposed fire design rules was verified by using the results from full scale fire tests and extensive numerical studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study analyses British military planning and actions during the Suez Crisis in 1956. It seeks to find military reasons for the change of concepts during the planning and compares these reasons with the tactical doctrines of the time. The thesis takes extensive advantage of military documents preserved in the National Archives, London. In order to expand the understanding of the exchange of views during the planning process, the private papers of high ranking military officials have also been consulted. French military documents preserved in the Service Historique de la Defence, Paris, have provided an important point of comparison. The Suez Crisis caught the British armed forces in the middle of a transition phase. The main objective of the armed forces was to establish a credible deterrence against the Soviet Union. However, due to overseas commitments the Middle East playing a paramount role because of its economic importance the armed forces were compelled to also prepare for Limited War and the Cold War. The armed forces were not fully prepared to meet this demand. The Middle Eastern garrison was being re-organised after the withdrawal from the Canal Base and the concept for a strategic reserve was unimplemented. The tactical doctrines of the time were based on experiences from the Second World War. As a result, the British view of amphibious operations and the subsequent campaigns emphasised careful planning, mastery of the sea and the air, sufficient superiority in numbers and firepower, centralised command and extensive administrative preparations. The British military had realized that Nasser could nationalise the Suez Canal and prepared an outline plan to meet this contingency. Although the plan was nothing more than a concept, it was accepted as a basis for further planning when the Canal was nationalised at the end of July. This plan was short-lived. The nominated Task Force Commanders shifted the landing site from Port Said to Alexandria because it enabled faster expansion of the bridgehead. In addition, further operations towards Cairo the hub of Nasser s power would be easier to conduct. The operational concept can be described as being traditional and was in accordance with the amphibious warfare doctrine. This plan was completely changed at the beginning of September. Apparently, General Charles Keightley, the Commander-in-Chief, and the Chairman of the Chiefs of Staff Committee developed the idea of prolonged aerial operations. The essence of the concept was to break the Egyptian will to resist by attacking the oil facilities, the transportation system and the armed forces. This victory through air concept would be supported by carefully planned psychological operations. This concept was in accordance with the Royal Air Force doctrine, which promoted a bomber offensive against selected target categories. General Keightley s plan was accepted despite suspicions at every planning level. The Joint Planning Staff and the Task Force Commanders opposed the concept from the beginning to the end because of its unpredictability. There was no information that suggested the bombing would persuade the Egyptians to submit. This problem was worsened by the fact that British intelligence was unable to provide reliable strategic information. The Task Force Commanders, who were responsible for the tactical plans, were not able to change Keightley s mind, but the concept was expanded to include a traditional amphibious assault on Port Said due to their resistance. The bombing campaign was never tested as the Royal Air Force was denied authorisation to destroy the transportation and oil targets. The Chiefs of Staff and General Keightley were too slow to realise that the execution of the plan depended on the determination of the Prime Minister. However, poor health, a lack of American and domestic support and the indecisiveness of the military had ruined Eden s resolve. In the end, a very traditional amphibious assault, which was bound to succeed at the tactical level but fail at the strategic level, was launched against Port Said.