1000 resultados para 290299 Aerospace Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is considerable anecdotal evidence from industry that poor wetting and liquid distribution can lead to broad granule size distributions in mixer granulators. Current scale-up scenarios lead to poor liquid distribution and a wider product size distribution. There are two issues to consider when scaling up: the size and nature of the spray zone and the powder flow patterns as a function of granulator scale. Short, nucleation-only experiments in a 25L PMA Fielder mixer using lactose powder with water and HPC solutions demonstrated the existence of different nucleation regimes depending on the spray flux Psi(a)-from drop-controlled nucleation to caking. In the drop-controlled regime at low Psi(a) values. each drop forms a single nucleus and the nuclei distribution is controlled by the spray droplet size distribution. As Psi(a) increases, the distribution broadens rapidly as the droplets overlap and coalesce in the spray zone. The results are in excellent agreement with previous experiments and confirm that for drop-controlled nucleation. Psi(a) should be less than 0.1. Granulator flow studies showed that there are two powder flow regimes-bumping and roping. The powder flow goes through a transition from bumping to roping as impeller speed is increased. The roping regime gives good bed turn over and stable flow patterns. This regime is recommended for good liquid distribution and nucleation. Powder surface velocities as a function of impeller speed were measured using high-speed video equipment and MetaMorph image analysis software, Powder surface velocities were 0.2 to 1 ms(-1)-an order of magnitude lower than the impeller tip speed. Assuming geometrically similar granulators, impeller speed should be set to maintain constant Froude number during scale-up rather than constant tip speed to ensure operation in the roping regime. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to understand the growth and compaction behaviour of chalcopyrite (copper concentrate), batch granulation tests were carried out using a rotating drum. The granule growth exhibited induction-type behaviour, as defined by Iveson and Litster [AIChE J. 44 (1998) 15 10]. There were two consecutive stages during granulation: the induction stage, during which the granules are gradually being compacted and little or no growth occurs, and the rapid growth stage, which starts when the granules have become surface wet and are rapidly growing. In agreement with earlier findings. an increased amount of binder liquid shortened the induction time. The compaction behaviour was also investigated. A displaced volume method was adopted to determine the porosity of the granules. It was shown that this technique had a limitation as it was unable to detect the reduction of the volumes of the granule pores after the granules had become surface wet. Due to this, some of the measurements were not suited for fitting a three-parameter empirical model. Attempts were made to determine whether the rapid growth stage started with the pore saturation exceeding a certain critical value, but due to the scatter in the porosity measurements and the fact that some of the measurements could not be used, it was not possible to determine a critical pore saturation, However, the porosity measurements clearly demonstrated that the porosity of the granules decreased during the induction stage of an experiment and that when rapid growth occurred, the granules had a pore saturation was around 0.85. This value was slightly lower than unity, which is most likely due to trapped air bubbles. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsaturated flow of liquid through packed beds of large particles was studied using six different liquids, all with contact angles greater than 90degrees on the bed packing (wax spheres of 9, 15 and 19.4 mm diameter). The liquid flow was discrete in nature, as drops for low flow rates and rivulets for high flow rates. For unsaturated liquid flows, the actual percolation velocity, not superficial velocity, should be used to characterize the flow. The percolation velocity did not vary with packed-bed depth, but was a strong function of liquid flow rate, liquid and particle properties. Effects of liquid and particle properties (but not flow rate) are well captured by a simple correlation between the liquid-particle friction factor and Reynolds number based on actual percolation velocities. Liquid dispersion, characterized by the maximum dispersion angle, varies significantly with liquid and particle properties. The tentative correlation suggested here needs further validation for a wider range of conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study has been carried out to characterise the performance of polymer stabilisers, partially hydrolysed polyvinyl acetate (PVAc), used in suspension polymerisation processes. The stabilisers are ranked by their ability to stabilise the dispersion characterised by the median coalescence time of a single drop with its homophase at a planar liquid/liquid interface. Results show that the stability of the dispersion relates closely to the molecular properties of the PVAcs. Other conditions being equal, PVAcs with higher molecular weights or lower degrees of hydrolysis can better stabilise a liquid-liquid dispersion. The stability of the dispersion also depends strongly on where the PVAc resides. The presence of a PVAc in the dispersed phase significantly reduces stability. Consistent with results reported in the literature, considerable scatter has been observed on the coalescence times of identical drops under the same conditions. An explanation for the scatter is also proposed in the paper, based on the classical Reynolds model for film thinning. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characteristics of sharkskin surface instability for linear low density polyethylene are studied as a function of film blowing processing conditions. By means of scanning electron microscopy and surface profilometry, is it found that for the standard industrial die geometry studied, sharkskin only occurs on the inside of the film bubble. Previous work suggests that this instability may be due to critical extensional stress levels at the exit of the die. Isothermal integral viscoelastic simulations of the annular extrusion process are reported, and confirm that the extensional stress at the die exit is large enough to cause local melt rupture. However the extensional stress level at the outer die wall predicts melt rupture of the outside bubble surface also, which contradicts the experimental findings. A significant temperature gradient is expected to exist across the die gap at the exit of the die, due to the external heating of the die and the low conductivity, of the polymer melt. It is shown that a gradient of 20 degreesC is required to cause sharkskin to only appear on the inner bubble surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and simple method for determination of micropore network connectivity of activated carbon using liquid phase adsorption is presented in this paper. The method is applied to three different commercial carbons with eight different liquid phase adsorptives as probes. The effect of the pore network connectivity on the prediction of multicomponent adsorption equilibria was also studied. For this purpose, the Ideal Adsorbed Solution Theory (IAST) was used in conjuction with the modified DR single component isotherm. The results of comparison with experimental data show that incorporation of the connectivity, and consideration of percolation processes associated with the different molecular sizes of the adsorptives in the mixture, can improve the performance of the IAST in predicting multicomponent adsorption equilibria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple percolation theory-based method for determination of the pore network connectivity using liquid phase adsorption isotherm data combined with a density functional theory (DFT)-based pore size distribution is presented in this article. The liquid phase adsorption experiments have been performed using eight different esters as adsorbates and microporous-mesoporous activated carbons Filtrasorb-400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The density functional theory (DFT)-based pore size distributions of the carbons were obtained using DFT analysis of argon adsorption data. The mean micropore network coordination numbers, Z, of the carbons were determined based on DR characteristic plots and fitted saturation capacities using percolation theory. Based on this method, the critical molecular sizes of the model compounds used in this study were also obtained. The incorporation of percolation concepts in the prediction of multicomponent adsorption equilibria is also investigated, and found to improve the performance of the ideal adsorbed solution theory (IAST) model for the large molecules utilized in this study. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new reconstruction algorithm for electrical impedance tomography. The algorithm assumes that there are two separate regions of conductivity. These regions are represented as eccentric circles. This new algorithm then solves for the location of the eccentric circles. Due to the simple geometry of the forward problem, an analytic technique using conformal mapping and separation of variables has been employed. (C) 2002 John Wiley Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.