983 resultados para 20-GC 2
Resumo:
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained by pellet injection. A value of n(d) tau-E T(i) = 7.8 x 10(20) m-3 s keV was obtained in this mode with T(e) approximately T(i) approximately 11 keV. In the L-mode regime, a regime, a record (140 kW) D-He-3 fusion power was generated with 10 - 14 MW of ICRH at the He-3 cyclotron frequency. Experiments were performed with the prototype launcher of the Lower Hybrid Current Drive (LHCD) systems with coupled power up to 1.6 MW with current drive efficiencies up to < n(e) > R I(CD)/P = 0.4 x 10(20) m-2 A/W. Fast electrons are driven by LHCD to tail temperatures of 100 keV with a hollow radial profile. Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current drive even without phasing the ICRH antennae.
Resumo:
利用水中爆炸冲击波使水泥试样损伤破坏,模拟爆炸采油时激波使岩石损伤开裂的现象.实验获得了适合本实验条件的激波峰压衰减规律p_m≈8.2(~3√W/R~(1.46)),得知压碎区尺度为集中装药特征尺度的2~5倍、拉伸损伤区尺度为集中装药特征尺度的20~30倍,激波使水泥试样破碎、拉裂的能量占总能量的2%~7%.
Resumo:
利用有限元软件 ,采用三维线性静态方法 ,对常用的 12 7mmIEU钻杆在常见的 11种蚀坑类型下的应力分布进行了计算。计算结果显示钻杆管壁常见蚀坑的应力集中系数在 1 5~2 5之间 ,拉伸和弯曲载荷作用下蚀坑应力分布基本一致 ,弯曲载荷的分析完全可以采用拉伸载荷结果来替代。对一系列的计算结果通过最小二乘法拟合出蚀坑应力集中系数随蚀坑深度和宽度的数学关系表明 ,拟合曲线与计算结果有非常好的一致性
Resumo:
Table of Contents
1 | Introduction | 1 |
1.1 | What is an Adiabatic Shear Band? | 1 |
1.2 | The Importance of Adiabatic Shear Bands | 6 |
1.3 | Where Adiabatic Shear Bands Occur | 10 |
1.4 | Historical Aspects of Shear Bands | 11 |
1.5 | Adiabatic Shear Bands and Fracture Maps | 14 |
1.6 | Scope of the Book | 20 |
2 | Characteristic Aspects of Adiabatic Shear Bands | 24 |
2.1 | General Features | 24 |
2.2 | Deformed Bands | 27 |
2.3 | Transformed Bands | 28 |
2.4 | Variables Relevant to Adiabatic Shear Banding | 35 |
2.5 | Adiabatic Shear Bands in Non-Metals | 44 |
3 | Fracture and Damage Related to Adiabatic Shear Bands | 54 |
3.1 | Adiabatic Shear Band Induced Fracture | 54 |
3.2 | Microscopic Damage in Adiabatic Shear Bands | 57 |
3.3 | Metallurgical Implications | 69 |
3.4 | Effects of Stress State | 73 |
4 | Testing Methods | 76 |
4.1 | General Requirements and Remarks | 76 |
4.2 | Dynamic Torsion Tests | 80 |
4.3 | Dynamic Compression Tests | 91 |
4.4 | Contained Cylinder Tests | 95 |
4.5 | Transient Measurements | 98 |
5 | Constitutive Equations | 104 |
5.1 | Effect of Strain Rate on Stress-Strain Behaviour | 104 |
5.2 | Strain-Rate History Effects | 110 |
5.3 | Effect of Temperature on Stress-Strain Behaviour | 114 |
5.4 | Constitutive Equations for Non-Metals | 124 |
6 | Occurrence of Adiabatic Shear Bands | 125 |
6.1 | Empirical Criteria | 125 |
6.2 | One-Dimensional Equations and Linear Instability Analysis | 134 |
6.3 | Localization Analysis | 140 |
6.4 | Experimental Verification | 146 |
7 | Formation and Evolution of Shear Bands | 155 |
7.1 | Post-Instability Phenomena | 156 |
7.2 | Scaling and Approximations | 162 |
7.3 | Wave Trapping and Viscous Dissipation | 167 |
7.4 | The Intermediate Stage and the Formation of Adiabatic Shear Bands | 171 |
7.5 | Late Stage Behaviour and Post-Mortem Morphology | 179 |
7.6 | Adiabatic Shear Bands in Multi-Dimensional Stress States | 187 |
8 | Numerical Studies of Adiabatic Shear Bands | 194 |
8.1 | Objects, Problems and Techniques Involved in Numerical Simulations | 194 |
8.2 | One-Dimensional Simulation of Adiabatic Shear Banding | 199 |
8.3 | Simulation with Adaptive Finite Element Methods | 213 |
8.4 | Adiabatic Shear Bands in the Plane Strain Stress State | 218 |
9 | Selected Topics in Impact Dynamics | 229 |
9.1 | Planar Impact | 230 |
9.2 | Fragmentation | 237 |
9.3 | Penetration | 244 |
9.4 | Erosion | 255 |
9.5 | Ignition of Explosives | 261 |
9.6 | Explosive Welding | 268 |
10 | Selected Topics in Metalworking | 273 |
10.1 | Classification of Processes | 273 |
10.2 | Upsetting | 276 |
10.3 | Metalcutting | 286 |
10.4 | Blanking | 293 |
Appendices | 297 | |
A | Quick Reference | 298 |
B | Specific Heat and Thermal Conductivity | 301 |
C | Thermal Softening and Related Temperature Dependence | 312 |
D | Materials Showing Adiabatic Shear Bands | 335 |
E | Specification of Selected Materials Showing Adiabatic Shear Bands | 341 |
F | Conversion Factors | 357 |
References | 358 | |
Author Index | 369 | |
Subject Index | 375 |
Resumo:
重力是体位改变过程中最基本的生物力学刺激因素.血流压力是表征心血管功能状态的一个基本指标.目前,体位改 变影响心血管系统的确切内部机制尚不清楚.为此,采用在流体和固体方程中分别引入体力项的方法,建立一个基于血流动 力学概念的三维流固耦合数学模型,用以研究体位改变,确切量化重力对血流压力的影响.通过数值计算,得到以下结果. 水平卧位条件下:a.单一血管中血流压力由无重力影响的轴对称二维分布变为重力影响下的三维不对称分布;b.随着进出 口压差由小变大,重力对压力分布和极值的影响由大变小,当压差值分别达到10 665.6 Pa(80 mmHg)和2 666.4 Pa(20 mmHg) 时,重力的影响就不再随进出口压差增大而变化;对三维单一流体,重力影响的总体趋势类似.对正、倒直立位,压力均为 二维轴对称分布,其重力影响强度约为水平卧位的2 倍以上.结果表明:基于血流动力学概念,引入体力项,建立三维流固 耦合模型为研究体位改变提供了一种新思路,重力对单一血管中血流压力分布和大小的影响因体位不同而不同,并与进出口 压差密切相关,提示,若血管进出口压差较小,忽略重力影响,不考虑体位改变,以二维轴对称模型来研究血管中血流状 态,须谨慎解释所得结果.
Resumo:
Tris-thenoyltrifluroacetonate of Nd3+ has been prepared and dissolved in DMF solation with very high concentration, and the contained hydrogen has not been substituted by deuterium. The absorption spectrum, emission spectrum, and fluorescence lifetime of the solution were measured. Very obvious characteristic fluorescence peaks were observed at 898 and 1058 nm. Based on Judd-Ofelt theory, three intensity parameters were obtained: Omega(2) = 4.9 x 10(-20) cm(2), Omega(4) = 5.1 x 10(-20) cm(2) and Omega(6) = 2.5 x 10(-20) cm(2). Line strengths S-cal, oscillator strengths f(cal), radiative transition probabilities A(ed), radiative lifetimes tau(r) and branch ratios beta were calculated too. The measured lifetime tau of 1058 nm peak is 460 mu s, and that of 898 nm 505 mu s. Comparison between theoretically computed radiative lifetime tau(r)(682 mu s) and the measured lifetime indicates that the non-radiative transition probability of the solution is very low and the fluorescence quantum efficiency very high. High values of three intensity parameters prove the high asymmetric surroundings of Nd3+, which is important for Nd3+ to absorb the excitation energy. Spectropic quality factor Omega(4)/Omega(6) > 1 makes radiation at 898 nm stronger than at 1058 nm.
Resumo:
制备了用于离子交换法制备光波导器件的掺铒碲-钨-钠玻璃基质。应用扎得-奥菲而特(Judd—Ofelt)理论计算了玻璃样品的三个强度参量,由强度参量计算了Er^3+离子的自发跃迁几率、荧光分支比等光谱参量;应用麦克库玻(McCumber)理论,计算了Er^3+离子在1.5μm的受激发射截面,荧光测试发现Er^3+离子的荧光半峰全宽可达65nm。比较了Er^3+离子在不同玻璃基质中的光谱特性。结果表明,Er^3+离子在碲-钨-钠玻璃中具有较高的受激发射截面和较宽的荧光半峰全宽,可以用于宽带光波导器件的制备。
Resumo:
制备了Er^3+/Yb^3+共掺磷酸盐玻璃. 通过分析其吸收光谱, 根据McCumber理论计算得到了Er^3+离子在波长1533 nm处的峰值发射截面为0.84×10^-20 cm^2, ^4I13/2能级的荧光寿命为8.5 ms. 利用激光二极管作为泵浦源, 成功地实现了Er^3+/Yb^3+共掺磷酸盐玻璃激光器的连续运转. 在室温下, 获得最大激光输出功率为80 mW, 斜率效率为16.5%.
Resumo:
分析了掺Er^3+碲酸盐玻璃的热力学稳定性能,研究了掺Er^3+碲酸盐玻璃的吸收和荧光光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er^3+离子的强度参数Ω(Ω2=4.79×10^-20cm^2,Ω4=1.52×10^-20cm^2,Ω6=0.66×10^-20cm^2),计算了离子的自发跃迁几率,荧光分支比;应用McCumber理论计算了Er^3+的受激发射截面(σe=10.40×10^-21cm^2)、Er^3+离子^4I13/2→^4I15/2发射谱的荧光半高宽(FWHM=65.5nm)
Resumo:
研制了一种用于宽带波导放大器的掺铒碲钨酸盐激光玻璃材料,对玻璃热稳定性、光谱性质进行了表征,并在其上采用离子交换法制作了平面光波导.掺铒碲钨酸盐玻璃的转变温度Tg和析品开始温度Tx分别为377.1和488.5℃;荧光半高宽为52nm;应用McCumber理论,计算得出Er^3+离子4I13/2→^4I15/2跃迁在峰值波长1532nm的受激发射截面为0.91×10^-20cm^2.不同条件下制作了在632.8nm处多模的平面光波导,通过拟合得到Ag^+离子在300℃的有效扩散系数De为2.82×10^-1
Resumo:
研究了掺铒TeO2-ZnO-PbCl2碲酸盐基氧卤玻璃在977nm激光二极管抽运下的发光和上转换发光特性,结果发现除红外1.53μm^4I13.2→^4I15/2发光外(荧光半高宽高达69nm),该玻璃还存在很强的^2H11/2→^4I15/2(527nm),^4S3/2→^4I15/2(549nm)和^4R9/2→^4I15/2(666nm)可见上转换发光.应用Judd-Ofelt理论计算得到玻璃强度参数Ω1(t=2,4,6)分别为Ω2=5.87×10^20cm^2,Ω4=2.08×10^2-cm^2,
Resumo:
研究了一种新型掺Er^3+碲酸盐玻璃的光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er^3+离子的强度参数Ω(Ω2=4.79×10^-20cm^2,Ω4=1.52×10^-20cm^2,Ω6=0.66×10^-20cm^2),计算了离子的自发跃迁概率,荧光分支比;应用McCumber理论计算了Er^3+的受激发射截面(σe=10.40×10^-21cm^2),Er^3+离子^4I13/2→^4I15/2发射谱的荧光半高宽(FWHM=65.5nm)及各能级的荧光寿命(^4I13/2能级为τrad
Resumo:
A novel Vb(3+)-Er-(3+) codoped phosphate glass for high power flashlamp pumping and high repetition rate laser at 1.54 mu m, designated EAT5-2, is developed. The weight-loss rate of is 1.3 x 10(-5) gcm(-2) h(-1) in boiling water, which is comparable to Kigre's QX-Er glass. Some spectroscopic parameters are analysed by Judd-Ofelt theory and McCumber theory The emission cross section is calculated to be 0.73 x 10(-20) cm(2). The thermo-mechanical properties of EAT5-2 are modified after an ion-exchange chemical strengthening process in a KNO3/NaNO3 molten salt bath. The thresholds for optical damage from the flashlamp pumping are tested on glass rods. A repetition rate of 15 Hz is achieved for chemically strengthened glass. The laser experimental results at. 1.54 mu m from flashlamp pumping are also reported.
Resumo:
Dy3+ doped oxyfluoride silicate glass was prepared and its optical absorption, 1.3 mu m emission, and upconversion luminescence properties were studied. Furthermore, the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] intensity parameters, oscillator strengths, spontaneous transition probability, fluorescence branching ratio and radiative lifetime were calculated by Judd-Ofelt theory, while stimulated emission cross section of H-6(9/2)+F-6(11/2)-> H-6(15/2) transition was calculated by McCumber theory [Phys. Rev. A. 134, 299 (1964)]. According to the obtained Judd-Ofelt intensity parameters Omega(2)=2.69x10(-20) cm(2), Omega(4)=1.64x10(-20) cm(2), and Omega(6)=1.64x10(-20) cm(2), the radiative lifetime was calculated to be 810 mu s for 1.3 mu m emission, whose full width at half maximum and sigma(e) were 115 nm and 2.21x10(-20)cm(2), respectively. In addition, near infrared to visible upconversion luminescence was observed and evaluated. The results suggest that Dy3+ doped oxyfluoride silicate glass can be used as potential host material for developing broadband optical amplifiers and laser applications.
Resumo:
Er3+ -doped strontium lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt intensity parameters Omega(1) (t = 2,4,6), calculated based on the experimental absorption spectrum and Judd-Ofelt theory, were found to be Omega(2) = 2.95 x 10(-20), Omega(4) = 0-91 X 10(-20), and Omega(6) = 0.36 x 10(-20) cm(2). Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions H-2(11/2) --> I-4(15/2), S-4(3/2) I-4(15/2), and F-4(9/2) --> I-4(15/2) respectively were observed. The upconversion mechanisms are discussed based oil the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions. The long-lived I-4(11/2) level is supposed to serve as the intermediate state responsible for the upconversion processes. (C) 2004 Published by Elsevier B.V.