955 resultados para 2-hydroxypropyl-beta-cyclodextrin
Resumo:
The synthesis and photoluminescent properties of Ln(III)-thenoyltrifluoroacetonate and dibenzoylmethanate complexes (Ln = Eu(III) and Gd(III) ions) containing tertiary amides such as dimethylacetamide (DMA), dimethylformamide (DMF), and dimethylbenzamide (DMB) as neutral ligands are reported. The Ln complexes were characterized by elemental analysis, complexometric titration with EDTA, and infrared spectroscopy. Single-crystal X-ray structure data of the [Eu(DBM)(3).(DMA)] compound indicates that this complex crystallizes in the triclinic system, space group PT with the following cell parameters: a = 10.2580(3) angstrom, b = 10.3843(2) angstrom, c= 22.3517(5) angstrom, alpha = 78.906(2)degrees, beta = 78.049(2)degrees, lambda= 63.239(2)degrees, V= 2066.41(9) angstrom(3), and Z = 2. The coordination polyhedron for the Eu(III) complex may be described as an approximate C-2v distorted monocapped trigonal prism. The optical properties of the Eu(III) complexes were studied based on the intensity parameters and luminescence quantum yield (q). The values of the ohm(2) parameter of the Eu-DBM complexes are larger than those for the Eu-TTA complexes, indicating that the Eu(III) ion is in a more polarizable chemical environment in the former case. The geometries of the complexes have been optimized by using the Sparkle Model, and the results have been used to perform theoretical predictions of the ligand-to-metal energy transfer via direct and exchange Coulomb mechanisms. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-beta-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin-or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.
Resumo:
To investigate the influence of the pyrimidine 2-keto group on selection of nucleotides for incorporation into DNA by polymerases, we have prepared two C nucleoside triphosphates that are analogues of dCTP and dTTP, namely 2-amino-5-(2'-deoxy-beta-d-ribofuranosyl)pyridine-5'-triphosphate (d*CTP) and 5-(2'-deoxy- beta-d-ribofuranosyl)-3-methyl-2-pyridone-5'-triphosphate (d*TTP) respectively. Both proved strongly inhibitory to PCR catalysed by Taq polymerase; d*TTP rather more so than d*CTP. In primer extension experiments conducted with either Taq polymerase or the Klenow fragment of Escherichia coli DNA polymerase I, both nucleotides failed to substitute for their natural pyrimidine counterparts. Neither derivative was incorporated as a chain terminator. Their capacity to inhibit DNA polymerase activity may well result from incompatibility with the correctly folded form of the polymerase enzyme needed to stabilize the transition state and catalyse phosphodiester bond formation.
Resumo:
2-Chloro-9-(2-deoxy-2-fluoro-$\beta $-D-arabinofuranosyl)adenine(Cl-F-ara-A) is a new deoxyadenosine analogue which is resistant to phosphorolytic cleavage and deamination, and exhibits therapeutic activity for both leukemia and solid tumors in experimental systems. To characterize its mechanism of cytotoxicity, the present study investigated the cellular pharmacology and the biochemical and molecular mechanisms of action of Cl-F-ara-A, from entrance of the drug into the cell, chemical changes to active metabolites, targeting on different cellular enzymes, to final programmed cell death response to the drug treatment.^ Cl-F-ara-A exhibited potent inhibitory action on DNA synthesis in a concentration-dependent and irreversible manner. The mono-, di-, and triphosphates of Cl-F-ara-A accumulated in cells, and their elimination was non-linear with a prolonged terminal phase, which resulted in prolonged dNTP depression. Ribonucleotide reductase activity was inversely correlated with the cellular Cl-F-ara-ATP level, and the inhibition of the reductase was saturated at higher cellular Cl-F-ara-ATP concentrations. The sustained inhibition of ribonucleotide reductase and the consequent depletion of deoxynucleotide triphosphate pools result in a cellular Cl-F-ara-ATP to dATP ratio which favors analogue incorporation into DNA.^ Incubation of CCRF-CEM cells with Cl-F-ara-A resulted in the incorporation of Cl-F-ara-AMP into DNA. A much lesser amount was associated with RNA, suggesting that Cl-F-ara-A is a more DNA-directed compound. The site of Cl-F-ara-AMP in DNA was related to the ratio of the cellular concentrations of the analogue triphosphate and the natural substrate dATP. Clonogenicity assays showed a strong inverse correlation between cell survival and Cl-F-ara-AMP incorporation into DNA, suggesting that the incorporation of Cl-F-ara-A monophosphate into DNA is critical for the cytotoxicity of Cl-F-ara-A.^ Cl-F-ara-ATP competed with dATP for incorporation into the A-site of the extending DNA strand catalyzed by both DNA polymerase $\alpha$ and $\varepsilon$. The incorporation of Cl-F-ara-AMP into DNA resulted in termination of DNA strand elongation, with the most pronounced effect being observed at Cl-F-ara-ATP:dATP ratio $>$1. The presence of Cl-F-ara-AMP at the 3$\sp\prime$-terminus of DNA also resulted in an increased incidence of nucleotide misincorporation in the following nucleotide position. The DNA termination and the nucleotide misincorporation induced by the incorporation of Cl-F-ara-AMP into DNA may contribute to the cytotoxicity of Cl-F-ara-A. ^
Resumo:
Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.
Resumo:
A competitive RT-PCR assay was used to quantify the expression of the GABA(A) receptor beta(1), beta(2) and beta(3) isoform mRNA transcripts in the superior frontal cortex and motor cortex of 21 control and 22 alcoholic cases. A single set of primers was designed that permitted amplification of all three transcripts and the internal standard simultaneously; differentiation of the individual transcripts was achieved by restriction enzyme digestion. Construction of a standard curve, using the internal standard and a concentration range of beta(2) cRNA-enabled quantitation of mRNA expression levels. No significant difference in mRNA expression was found between the control and alcoholic case groups in either the superior frontal or motor cortex for the beta(2) or beta(3) isoforms. A significant interaction was found between isoform and area, although, the two case groups did not partition on this measure. The interaction was due to a significant difference between superior frontal and motor cortex for the beta(3) isoform; this regional comparison was not significant for beta(2) mRNA. Age at death and post-mortem delay (PMD) had no significant effect on beta mRNA expression in either case group in either region. A beta(1) signal could not be detected in the RT-PCR assay. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Resumo:
Ramipril is used mainly for the treatment of hypertension and to reduce incidence of fatality following heart attacks in patients who develop indications of congestive heart failure. In the paediatric population it is used most commonly for the treatment of heart failure, hypertension in type 1 diabetes and diabetic nephropathy. Due to the lack of a suitable liquid formulation, the current study evaluates the development of a range of oral liquid formulations of ramipril along with their in vitro and in vivo absorption studies. Three different formulation development approaches were studied: solubilisation using acetic acid as a co-solvent, complexation with hydroxypropyl-β-cyclodextrin (HP-β-CD) and suspension development using xanthan gum. Systematic optimisation of formulation parameters for the different strategies resulted in the development of products stable for twelve months at long term stability conditions. In vivo evaluation showed CMAX of 10.48 µg/mL for co-solvent, 13.04µg/ml for the suspension and 29.58µg/mL for the cyclodextrin based ramipril solution. Interestingly, both ramipril solution (co-solvent) and the suspension showed a TMAX of 2.5h, however, cyclodextrin based ramipril produced TMAX at 0.75h following administration. The results presented in this study provide translatable products for oral liquid ramipril which offer preferential paediatric use over existing alternatives.
Resumo:
Este trabalho teve como objectivo inicial o estudo de processos oxidativos avançados de forma a remediar e tratar águas contaminadas por pesticidas. No entanto, ao longo do trabalho experimental, constatou-se que os produtos resultantes da degradação de pesticidas são muitas vezes mais tóxicos do que os compostos que lhes deram origem e que, por isso, degradar um composto nem sempre é o melhor para o ambiente. Assim, neste trabalho, procurou-se estudar o processo de degradação com o objectivo de minimizar o impacto ambiental dos pesticidas na água e no ambiente em geral. A parte experimental deste trabalho foi dividida em duas etapas, sendo que, em ambas, a voltametria de onda quadrada e a espectrofotometria de UV/Vis foram os métodos de análise utilizados, para acompanhar o processo de fotodegradação. Na primeira etapa estudou-se a relação entre a estrutura química dos pesticidas MCPA, MCPP, 2.4-D e Dicloroprop e a sua fotodegradação. Soluções aquosas dos pesticidas enunciados foram submetidas a irradiação UV/vis, com incrementos variáveis de tempo de irradiação. Os resultados obtidos, nesta etapa, permitiram constatar diferenças na percentagem de degradação dos diferentes pesticidas. Dos pesticidas estudados verificou-se uma maior fotodegradação para o MCPA e MCPP seguido do Dicloroprop e finalmente o 2.4-D que se degradou menos. Os dados obtidos sugerem que a fotodegradação destes pesticidas está intimamente ligada com a estrutura das moléculas. A presença de um maior número de grupos cloro ligados ao anel aromático nos pesticidas 2,4-D e Dicloroprop faz com que estes sejam mais estáveis e por isso se degradam menos que o MCPA e o MCPP. Por outro lado, o facto de o 2,4-D apresentar um potencial de oxidação mais elevado do que o Dicloroprop, faz com que este seja mais difícil de degradar, o que justifica a diferença entre os dois. Desta forma, foi possível concluir que a estrutura dos pesticidas condiciona o processo de degradação, como esperado. Na segunda etapa, estudou-se a estabilização dos pesticidas MCPA e MCPP após encapsulação, com 2-hidroxipropil-β-ciclodextrina (HP-β-CD), em água desionizada e em água do rio. Para tal, submeteram-se as soluções aquosas dos pesticidas com e sem ciclodextrina, a irradiação UV/vis, também com incrementos variáveis de tempo. No caso do MCPA verificou-se que, tanto para água desionizada como para água do rio, que este herbicida encapsulado se degrada bastante menos do que o MCPA livre. O encapsulamento permitiu reduzir quase para metade a taxa de fotodegradação. Assim, confirmou-se que a HP-β-CD permite estabilizar este pesticida, tornando-o mais resistente à fotodegradação. Desta forma, originam-se menos produtos de degradação, os quais podem ser mais tóxicos, e reduz-se de o impacto ambiental deste herbicida. Verificou-se também que o MCPA livre se degrada mais em água do rio do que em água desionizada, provavelmente devido à matéria orgânica presente nesta água, que promove o processo de degradação. No que respeita ao MCPP também se constatou que este herbicida se degrada menos encapsulado do que livre, em água desionizada e em água do rio. Neste caso, conseguiu-se reduzir pouco a taxa de fotodegradação, mas, ainda assim se verifica uma estabilização deste pesticida através do encapsulamento. No entanto, tornou-se mais evidente a estabilização do MCPP após encapsulação em água do rio, já que apresenta uma taxa de fotodegradação menor. Este facto demonstra que a HP-β-CD permite estabilizar também este pesticida, tornando-o mais resistente à fotodegradação, e reduzindo seu impacto ambiental.
Resumo:
Schistosomiasis is a parasitic disease which kills a half million people per year, a I I over the world. Praziquantel (PZQ) is the drug-of-choice for schistosomiasis because of its effectiveness, ease of administration, and low cost. However, poor solubility restricts its delivery, especially via the oral route. In this study, we describe beta-cyclodextrin (beta-CD) complexation as an alternative to improve the PZQ bioavailability. Physicochemical analysis were performed to characterize the inclusion complex formed between PZQ and beta-CD. Differential scanning calorimetry (DSC) thermograms and morphological analysis using scanning electronic microscopy (SEM) gave evidences of the complex formation. Diffusion NMR experiments allowed determination of the fraction of PZQ bound to beta-CD (37%) and the association constant (941 +/- 47 M(-1)). The in vivo evaluation of the complexation on the effect of PZQ was performed on mice infected with Schistosoma mansoni (BH strain); after 15 days of treatment with the PZQ:beta-CD complex the efficacy, evaluated by the number of remaining alive worms, was 99%, against 59% elicited by plain PZQ.
Resumo:
Background: To test if the expression of Smad1-8 mRNAs were predictive of survival in patients with oral squamous cell carcinoma (SCC). Patients and Methods: We analyzed, prospectively, the expression of Smad1-8, by means of Ribonuclease Protection Assay in 48 primary, operable, oral SCC. In addition, 21 larynx, 10 oropharynx and 4 hypopharynx SCC and 65 matched adjacent mucosa, available for study, were also included. For survival analysis, patients were categorized as positive or negative for each Smad, according to median mRNA expression. We also performed real-time quantitative PCR (QRTPCR) to asses the pattern of TGF beta 1, TGF beta 2, TGF beta 3 in oral SCC. Results: Our results showed that Smad2 and Smad6 mRNA expression were both associated with survival in Oral SCC patients. Cox Multivariate analysis revealed that Smad6 positivity and Smad2 negativity were both predictive of good prognosis for oral SCC patients, independent of lymph nodal status (P = 0.003 and P = 0.029, respectively). In addition, simultaneously Smad2(-) and Smad6(+) oral SCC group of patients did not reach median overall survival (mOS) whereas the mOS of Smad2(+)/Smad6(-) subgroup was 11.6 months (P = 0.004, univariate analysis). Regarding to TGF beta isoforms, we found that Smad2 mRNA and TGF beta 1 mRNA were inversely correlated (p = 0.05, R = -0.33), and that seven of the eight TGF beta 1(+) patients were Smad2(-). In larynx SCC, Smad7(-) patients did not reach mOS whereas mOS of Smad7(+) patients were only 7.0 months (P = 0.04). No other correlations were found among Smad expression, clinico-pathological characteristics and survival in oral, larynx, hypopharynx, oropharynx or the entire head and neck SCC population. Conclusion: Smad6 together with Smad2 may be prognostic factors, independent of nodal status in oral SCC after curative resection. The underlying mechanism which involves aberrant TGF beta signaling should be better clarified in the future.
Resumo:
The effect of binding Tb(3+) to sodium taurocholate aggregates containing polyaromatic hydrocarbon guests was examined using pyrene and 1-ethylnaphthalene as guests that bind to the primary aggregate, and 1-naphthyl-1-ethanol as a secondary aggregate guest. Time-resolved fluorescence quenching studies were used to study the binding site properties, while laser flash photolysis quenching studies provided information on the dynamics of the guest-aggregate system. Both the primary and secondary aggregate binding sites became more compact in the presence of bound Tb(3+), while only the primary aggregate became more accessible to anionic molecules. The binding dynamics for the guest-primary aggregate system became faster when Tb(3+) was bound to the aggregate. In contrast, for the guest-secondary aggregate the presence of Tb(3+) resulted in a small decrease in the dissociation rate constant. The influence of bound Tb(3+) on the primary and secondary bile salt aggregates is significantly different, which affects how these aggregates can be used as supramolecular host systems to modify guest reactivity.