913 resultados para 0801 Artificial Intelligence and Image Processing
Resumo:
Although the hydrophobicity is usually an arduous parameter to be determined in the field, it has been pointed out as a good option to monitor aging of polymeric outdoor insulators. Concerning this purpose, digital image processing of photos taken from wet insulators has been the main technique nowadays. However, important challenges on this technique still remain to be overcome, such as; images from non-controlled illumination conditions can interfere on analyses and no existence of standard surfaces with different levels of hydrophobicity. In this paper, the photo image samples were digitally filtered to reduce the illumination influence, and hydrophobic surface samples were prepared from wetting silicon surfaces with solution of water-alcohol. Furthermore norevious studies triying to quantify and relate these properties in a mathematical function were found, that could be used in the field by the electrical companies. Based on such considerations, high quality images of countless hydrophobic surfaces were obtained and three different image processing methodologies, the fractal dimension and two Haralick textures descriptors, entropy and homogeneity, associated with several digital filters, were compared. The entropy parameter Haralick's descriptors filtered with the White Top-Hat filter presented the best result to classify the hydrophobicity.
Resumo:
This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.
Resumo:
Perfusion CT imaging of the liver has potential to improve evaluation of tumour angiogenesis. Quantitative parameters can be obtained applying mathematical models to Time Attenuation Curve (TAC). However, there are still some difficulties for an accurate quantification of perfusion parameters due, for example, to algorithms employed, to mathematical model, to patient’s weight and cardiac output and to the acquisition system. In this thesis, new parameters and alternative methodologies about liver perfusion CT are presented in order to investigate the cause of variability of this technique. Firstly analysis were made to assess the variability related to the mathematical model used to compute arterial Blood Flow (BFa) values. Results were obtained implementing algorithms based on “ maximum slope method” and “Dual input one compartment model” . Statistical analysis on simulated data demonstrated that the two methods are not interchangeable. Anyway slope method is always applicable in clinical context. Then variability related to TAC processing in the application of slope method is analyzed. Results compared with manual selection allow to identify the best automatic algorithm to compute BFa. The consistency of a Standardized Perfusion Index (SPV) was evaluated and a simplified calibration procedure was proposed. At the end the quantitative value of perfusion map was analyzed. ROI approach and map approach provide related values of BFa and this means that pixel by pixel algorithm give reliable quantitative results. Also in pixel by pixel approach slope method give better results. In conclusion the development of new automatic algorithms for a consistent computation of BFa and the analysis and definition of simplified technique to compute SPV parameter, represent an improvement in the field of liver perfusion CT analysis.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
Resumo:
In recent years, advanced metering infrastructure (AMI) has been the main research focus due to the traditional power grid has been restricted to meet development requirements. There has been an ongoing effort to increase the number of AMI devices that provide real-time data readings to improve system observability. Deployed AMI across distribution secondary networks provides load and consumption information for individual households which can improve grid management. Significant upgrade costs associated with retrofitting existing meters with network-capable sensing can be made more economical by using image processing methods to extract usage information from images of the existing meters. This thesis presents a new solution that uses online data exchange of power consumption information to a cloud server without modifying the existing electromechanical analog meters. In this framework, application of a systematic approach to extract energy data from images replaces the manual reading process. One case study illustrates the digital imaging approach is compared to the averages determined by visual readings over a one-month period.
Resumo:
A pilot study to detect volume changes of cerebral structures in growth hormone (GH)-deficient adults treated with GH using serial 3D MR image processing and to assess need for segmentation prior to registration was conducted.
Resumo:
The psychological refractory period (PRP) refers to a delay of response times (RT) to the second of two stimuli when these stimuli are presented in rapid succession. If this limitation of rapidly processing the second stimulus contributes to the well-known differences in speed of information processing between individuals with higher and lower mental ability, individuals with lower mental ability should exhibit a more pronounced PRP effect than individuals with higher mental ability. Previous studies on this question, however, yielded inconsistent results. In the present study, we assessed mental ability-related differences in the PRP by measuring lateralized readiness potentials (LRPs) to separate premotor and motor aspects of speed of information processing in 95 individuals with higher and 95 individuals with lower mental ability. Although individuals with higher mental ability processed information faster than individuals with lower mental ability as indicated by shorter RTs and shorter premotor LRP latencies, the PRP effect was equally pronounced in both groups. These findings suggest that the processes underlying the PRP effect do not contribute to mental ability-related differences in speed of information processing. Rather, these differences seem to occur at an earlier stage of information processing such as stimulus encoding, stimulus analysis, or stimulus evaluation.
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
To properly understand and model animal embryogenesis it is crucial to obtain detailed measurements, both in time and space, about their gene expression domains and cell dynamics. Such challenge has been confronted in recent years by a surge of atlases which integrate a statistically relevant number of different individuals to get robust, complete information about their spatiotemporal locations of gene patterns. This paper will discuss the fundamental image analysis strategies required to build such models and the most common problems found along the way. We also discuss the main challenges and future goals in the field.
Resumo:
This paper presents a computer vision system that successfully discriminates between weed patches and crop rows under uncontrolled lighting in real-time. The system consists of two independent subsystems, a fast image processing delivering results in real-time (Fast Image Processing, FIP), and a slower and more accurate processing (Robust Crop Row Detection, RCRD) that is used to correct the first subsystem's mistakes. This combination produces a system that achieves very good results under a wide variety of conditions. Tested on several maize videos taken of different fields and during different years, the system successfully detects an average of 95% of weeds and 80% of crops under different illumination, soil humidity and weed/crop growth conditions. Moreover, the system has been shown to produce acceptable results even under very difficult conditions, such as in the presence of dramatic sowing errors or abrupt camera movements. The computer vision system has been developed for integration into a treatment system because the ideal setup for any weed sprayer system would include a tool that could provide information on the weeds and crops present at each point in real-time, while the tractor mounting the spraying bar is moving
Resumo:
A first study in order to construct a simple model of the mammalian retina is reported. The basic elements for this model are Optical Programmable Logic Cells, OPLCs, previously employed as a functional element for Optical Computing. The same type of circuit simulates the five types of neurons present in the retina. Different responses are obtained by modifying either internal or external connections. Two types of behaviors are reported: symmetrical and non-symmetrical with respect to light position. Some other higher functions, as the possibility to differentiate between symmetric and non-symmetric light images, are performed by another simulation of the first layers of the visual cortex. The possibility to apply these models to image processing is reported.
Resumo:
In this PhD Thesis proposal, the principles of diffusion MRI (dMRI) in its application to the human brain mapping of connectivity are reviewed. The background section covers the fundamentals of dMRI, with special focus on those related to the distortions caused by susceptibility inhomogeneity across tissues. Also, a deep survey of available correction methodologies for this common artifact of dMRI is presented. Two methodological approaches to improved correction are introduced. Finally, the PhD proposal describes its objectives, the research plan, and the necessary resources.