845 resultados para 020501 Classical and Physical Optics
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.
Resumo:
The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.
Resumo:
Cochin University of Science And Technology
Resumo:
A knowledge of the physical and chemical properties of superheavy elements is expected to be of great value for the detection of these elements, owing to the need for chemical separation in their isolation and identification. The methods for predicting their electronic structures, expected trends in their chemical and physical properties and the results of such predictions for the individual superheavy elements are reviewed. The periodic table is extended up to element 172.
Resumo:
The accurate transport of an ion over macroscopic distances represents a challenging control problem due to the different length and time scales that enter and the experimental limitations on the controls that need to be accounted for. Here, we investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. The applicability of each of the control methods depends on the length and time scales of the transport. Our comprehensive set of tools allows us make a number of observations. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time.
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
Speaker(s): Prof. Steffen Staab Organiser: Dr Tim Chown Time: 23/05/2014 10:30-11:30 Location: B53/4025 Abstract The Web is constructed based on our experiences in a multitude of modalities: text, networks, images, physical locations are some examples. Understanding the Web requires from us that we can model these modalities as they appear on the Web. In this talk I will show some examples of how we model text, hyperlink networks and physical-social systems in order to improve our understanding and our use of the Web.
Determination of the Anthropometric and Physical Qualities Profile in Footballers Children of Bogotá
Resumo:
Objective. The objective of this study is to define the profile anthropometric and of basic physical qualities, in 306 children in 7-16 yearold ages. Method. Is carried out anthropometric mensurations of weight (kg) and it height (m), IMC (weight (kg)/it height (m2), percentage of corporal fat, besides the test of Course Navatte, horizontal jump without impulse, Sit and Reach to each one of the fellows. Results. The results were analyzed from the statistical point of view with measures of central tendency, you uses the stocking, the typical standard deviation as I calculate of variability, with a p <0,05 like significant difference. You identifies the variable anthropometric and of physical qualities finding differences in the population as for the percentage of corporal fat, the power aerobic, the flexibility and the explosive force in inferior members. Conclusions. Differences are shown in the opposing values and this can be influenced, for nutritional, socioeconomic factors and for the type of used training.
Resumo:
World Health Organization (WHO) has prioritized physical activity (PA) as one of the mostrelevant strategies leading the decreasing prevalence of noncommunicable chronic diseases. Pedometer has emerged as one of the valid intervention programs, reliable and useful to assess,measure and promote the physical activity practice, through counts the number of steps perday. One of the aims is to establish the goals based on steps per day made by a person and thepositive feedback, which can generate behavior changes and adoption of healthy habits, from a regular physical activity practice perspective. This review attends to enhance the current state ofpedometer program, as an intervention one, in all kind of population; its health impact and theapplication methodologies, using the pedometer as a steps quantifier device, with feasible access,use and management. Additionally, the review will be useful as a framework to design futureresearch projects, aim to develop, adapt and apply evidence based pedometer protocols, insideclinical, academic and community context.
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado de la publicaci??n