898 resultados para zinc dust


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary room temperature molten electrolytes based on acetamide and zinc perchlorate have been prepared and characterized. The electrolytes are found to be highly zinc ion-conducting with very favorable physicochemical and electrochemical characteristics. Raman and infrared spectroscopic studies reveal the presence of large free-ion concentration in the molten liquid. This is corroborated by the high conductivity observed under ambient conditions. Rechargeable zinc batteries assembled using gamma-MnO2 as the cathode and Zn as the anode with the molten electrolyte show high discharge capacities over several cycles, indicating excellent reversibility. This unique class of acetamide-based, room temperature molten liquids may become viable and green alternative electrolytes for rechargeable zinc-based secondary batteries. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave, irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal wurtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140-160 nm and a wall of thickness, 40-50 nm. The length of nanorods and nanotubes varies in the narrow range of 500-600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared the spectral aerosol optical depth (AOD) and aerosol fine mode fraction (AFMF) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) with those of Aerosol Robotic Network (AERONET) at Kanpur (26.45N, 80.35E), northern India for the pre-monsoon season (March to June, 2001-2005). We found that MODIS systematically overestimates AOD during pre-monsoon season (known to be influenced by dust transport from north-west of India). The errors in AOD were correlated with the MODIS top-of-atmosphere apparent surface reflectance in 2.1 mu m channel (rho*(2.1)). MODIS aerosol algorithm uses p*(2.1) to derive the surface reflectance in visible channels (rho(0.47), rho(0.66)) using an empirical mid IR-visible correlation (rho(0.47) = rho(2.1)/4, rho(0.66) = rho(2.1)/2). The large uncertainty in estimating surface reflectance in visible channels (Delta rho(0.66)+/- 0.04, Delta rho(0.47)+/- 0.02) at higher values of p*(2.1) (p*(2.1) > 0.18) leads to higher aerosol contribution in the total reflected radiance at top-of atmosphere to compensate for the reduced surface reflectance in visible channels and thus leads to overestimation of AOD. This was also reflected in the very low values of AFMF during pre-monsoon whose accuracy depends on the aerosol path radiance in 0.47 and 0.66 mu m channels and aerosol models. The errors in AOD were also high in the scattering angle range 110 degrees-140 degrees, where the effect of dust non-spherity on its optical properties is significant. The direct measurements of spectral surface reflectance are required over the Indo-Gangetic basin in order to validate the mid IR-visible relationship. MODIS aerosol models should also be modified to incorporate the effect of non-spherity of dust aerosols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p-aminobenzoate could be intercalated into the anionic clay, Ni3Zn2(OH)(8)(OAc)(2)center dot 2H(2)O at a high pH (similar to 10). When the pH was reduced to similar to 7 while washing colloidal dispersion due to delamination was observed. The development of partial positive charge on the amine end of the intercalated anion causes repulsion between the layers leading to delamination and colloidal dispersion of monolayers in water. The layers could be restacked from the colloid to form the parent solid either by increasing the pH or by evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dodecylsulphate-intercalated zinc hydroxysalt, Zn-5(OH)(8)(DS)(2)center dot mH(2)O delaminates to give monolayer colloidal dispersions in alcohols such as 1-butanol and ethylene glycol. The extent of delamination and the stability of the colloidal dispersion are comparable to those of layered double hydroxides. The solvothermal decomposition of the colloidal dispersion of the hydroxysalt in ethylene glycol yields a bimodal ZnO having a nanotubular structure decorated with nanosheets. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5 km resolution). We found that the `dust index' algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a `minimum reference' approach instead of a conventional `maximum reference' approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 +/- 1.8 W m(-2), which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel zinc ferrites have been very widely used in the high‐frequency applications. In our present study we have prepared Ni1−x Znx Fe2O4 (0≤x≤1) using novel hydrazinium metal hydrazinecarboxylate precursors. High densities (∼99%) have been obtained for all the ferrites sintered at relatively low temperatures, 1100 °C, in comparison with the conventional method (≥1200 °C). The variation of magnetic properties like magnetic moment, Curie temperature, and permeability with zinc concentration have been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural changes occurring during warm working of Cd-1.5 pct Zn alloy and their effect on the subsequent mechanical properties are studied. It is observed that changes in grain size and preferred orientation are important to a large extent in controlling the mechanical strength. The Hall-Petch slope,R decreases in the warm worked material while the friction stress, σo increases. The lowerR values are attributed to the development of a (101l) texture and the higher σo values are interpreted on the basis of changes in the basal texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resistivities of zinc borate glasses containing Fe2O3, V2O5, and Fe2O3 + V2O5 have been measured as a function of composition and temperature. The values of resistivity and activation energy decrease as the transition metal oxide content is increased. The conductivities of the glasses containing Fe2O3 + V2O5 are more than the sum of those of the glasses containing only Fe2O3 or V2O5 (i.e. the activation energies are less than the sum of those in the glasses containing only Fe2O3 or V2O5). The results are discussed in terms of existing theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terminal solid solubilities of the periclase (MgO-rich) and zincite (ZnO-rich) solid solutions in the MgO---ZnO system have been determined by measuring the activity of MgO using a solid-state galvanic cell of the type 02(g), Pt/MgO, MgF2//MgF2//{χMgO+(1-χ)ZnO}(s, sln), MgF2/Pt, O2(g) in the temperature range 900–1050°C. The ZnO activity was calculated by graphical Gibbs-Duhem integration. The activity-composition plots of both components exhibit a strong positive deviation from ideality and are characterised by a miscibility gap. The terminal solid solubilities of the periclase and zincite solid solutions obtained from the activity-composition plots are found to be in reasonable agreement with those reported in the literature.