384 resultados para yleinen kielitiede


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface proteolysis is important in migration of cells through tissue barriers. In the case of prokaryotes, surface proteolysis has been associated with invasiveness of pathogenic bacteria from the primary infection site into circulation and secondary infection sites in the host. This study addressed surface proteases of two important bacterial pathogens, Yersinia pestis which is the causative agent of the lethal systemic zoonosis, plague, and Salmonella enterica serovar Typhimurium which is an oral-faecal pathogen that annually causes millions of cases of gastoenteritis that may develop to septicaemia. Both bacterial species express an ortholog of the omptin family of transmembrane β-barrel, outer membrane proteases/adhesins. This thesis work addressed the functions of isolated plasminogen activator Pla of Y. pestis and the PgtE omptin of S. enterica. Pla and PgtE were isolated as His6-fusion proteins in denaturing conditions from recombinant Escherichia coli and activated by adding lipopolysaccharide (LPS). The structural features in LPS that enhance plasminogen activation by His6-Pla were determined, and it was found that the lack of O-specifi c chain, the presence of outer core oligosaccharide, the presence of phosphates in lipid A, as well as a low level of acylation in lipid A influence the enhancement of Pla activity by LPS. A conserved lipid A phosphate binding motif in Pla and PgtE was found important for the enhancement of enzymatic activity by LPS. The results help to explain the biological signifi cance of the genetic loss of the O-specifi c chain biosynthesis in Y. pestis as well as the variations in LPS structure upon entry of Y. pestis into the human host. Expression of Pla in Y. pestis is associated with adhesiveness to lamin of basement membranes. Here, isolated and LPS-activated His6-Pla was coated onto fluorescent microparticles. The coating conferred specifi c adhesiveness of the particles to laminin and reconstituted basement membrane, thus confi rming the intrinsic adhesive characteristics of the Pla protein. The adhesiveness is thought to direct plasmin proteolysis at tissue barriers, thus increasing tissue damage and bacterial spread. Gelatinase activity has not been previously reported in enteric bacteria. Expression of PgtE in S. enterica was associated with cleavage of porcine skin gelatin, denaturated human type I collagen, as well as DQ-gelatin. Purifi ed His6-PgtE also degraded porcine skin gelatin and human type I gelatin but did not react with DQ-gelatin, indicating that minor differences are seen in proteolysis by isolated and cell-bound PgtE. Pla was less effective in gelatin degradation. The novel gelatinase activity in S. enterica is likely to enhance bacterial dissemination during infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The object of this study is a tailless internal membrane-containing bacteriophage PRD1. It has a dsDNA genome with covalently bound terminal proteins required for replication. The uniqueness of the structure makes this phage a desirable object of research. PRD1 has been studied for some 30 years during which time a lot of information has accumulated on its structure and life-cycle. The two least characterised steps of the PRD1 life-cycle, the genome packaging and virus release are investigated here. PRD1 shares the main principles of virion assembly (DNA packaging in particular) and host cell lysis with other dsDNA bacteriophages. However, this phage has some fascinating individual peculiarities, such as DNA packaging into a membrane vesicle inside the capsid, absence of apparent portal protein, holin inhibitor and procapsid expansion. In the course of this study we have identified the components of the DNA packaging vertex of the capsid, and determined the function of protein P6 in packaging. We managed to purify the procapsids for an in vitro packaging system, optimise the reaction and significantly increase its efficiency. We developed a new method to determine DNA translocation and were able to quantify the efficiency and the rate of packaging. A model for PRD1 DNA packaging was also proposed. Another part of this study covers the lysis of the host cell. As other dsDNA bacteriophages PRD1 has been proposed to utilise a two-component lysis system. The existence of this lysis system in PRD1 has been proven by experiments using recombinant proteins and the multi-step nature of the lysis process has been established.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viruses of Archaea are the least studied group of viruses. Fewer than 50 archaeal viruses have been reported which constitutes less than one percent of all the isolated prokaryotic viruses. Only about one third of the isolated archaeal viruses infect halophiles. The diversity of haloviruses, virus ecology in highly saline environments and the interactions of haloviruses with their hosts have been little studied. The exiguous knowledge available on halophilic systems is not only due to inadequate sampling but also reflects the extra challenge highly saline systems set on biochemical studies. In this study six new haloviruses were isolated and characterized. Viruses included four archaeal viruses and two bacteriophages. All of the other isolates exhibited head-tail morphology, except SH1 which was the first tailless icosahedral virus isolated from a high salt environment. Production and purification procedures were set up for all of these viruses and they were subjected to stability determinations. Archaeal virus SH1 was studied in more detail. Biochemical studies revealed an internal membrane underneath the protein capsid and a linear dsDNA genome. The overall structure of SH1 resembles phages PRD1, PM2 and Bam35 as well as an archaeal virus STIV. SH1 possesses about 15 structural proteins that form complexes under non-reducing conditions. Quantitative dissociation provided information about the positions of these proteins in the virion. The life cycle of SH1 was also studied. This lytic virus infects Haloarcula hispanica. Adsorption to the host cells is fairly inefficient and the life cycle rather long. Finally, virus responses in a variety of ionic conditions were studied. It was discovered that all of the studied viruses from low salt, marine and high salt environments tolerated larger range of salinities than their bacterial or archaeal hosts. The adsorption efficiency was not determined by the natural environment of a virus. Even though viruses with the slowest binding kinetics were among the haloviruses, fast binders were observed in viruses from all environments. When the salinity was altered, the virus adsorption responses were diverse. Four different behavioral patterns were observed: virus binding increased or decreased in increasing salinity, adsorption maximum was at a particular salt concentration or the salinity did not affect the binding. The way the virus binding was affected did not correlate with the environment, virus morphology or the organism the virus infects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correct localization of proteins is essential for cell viability. In order to achieve correct protein localization to cellular membranes, conserved membrane targeting and translocation mechanisms have evolved. The focus of this work was membrane targeting and translocation of a group of proteins that circumvent the known targeting and translocation mechanisms, the C-tail anchored protein family. Members of this protein family carry out a wide range of functions, from protein translocation and recognition events preceding membrane fusion, to the regulation of programmed cell death. In this work, the mechanisms of membrane insertion and targeting of two C-tail anchored proteins were studied utilizing in vivo and in vitro methods, in yeast and mammalian cell systems. The proteins studied were cytochrome b(5), a well characterized C-tail anchored model protein, and N-Bak, a novel member of the Bcl-2 family of regulators of programmed cell death. Membrane insertion of cytochrome b(5) into the endoplasmic reticulum membrane was found to occur independently of the known protein conducting channels, through which signal peptide-containing polypeptides are translocated. In fact, the membrane insertion process was independent of any protein components and did not require energy. Instead membrane insertion was observed to be dependent on the lipid composition of the membrane. The targeting of N-Bak was found to depend on the cellular context. Either the mitochondrial or endoplasmic reticulum membranes were targeted, which resulted in morphological changes of the target membranes. These findings indicate the existence of a novel membrane insertion mechanism for C-tail anchored proteins, in which membrane integration of the transmembrane domain, and the translocation of C-terminal fragments, appears to be spontaneous. This mode of membrane insertion is regulated by the target membrane fluidity, which depends on the lipid composition of the bilayer, and the hydrophobicity of the transmembrane domain of the C-tail anchored protein, as well as by the availability of the C-tail for membrane integration. Together these mechanisms enable the cell to achieve spatial and temporal regulation of sub-cellular localization of C-tail anchored proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, there are nine known human herpesviruses and these viruses appear to have been a very common companion of humans throughout the millenia. Of human herpesviruses, herpes simplex viruses 1 and 2 (HSV-1, HSV-2), causative agents of herpes labialis and genital herpes, and varicella-zoster virus (VZV), causative agent of chicken pox, are also common causes of central nervous system (CNS) infections. In addition, human cytomegalovirus (CMV), Epstein-Barr virus (EBV) and human herpesviruses 6A, 6B, and 7 (HHV-6A, HHV-6B, HHV-7), all members of the herpesvirus family, can also be associated with encephalitis and meningitis. Accurate diagnostics and fast treatment are essential for patient recovery in CNS infections and therefore sensitive and effective diagnostic methods are needed. The aim of this thesis was to develop new potential detection methods for diagnosing of human herpesvirus infections, especially in immunocompetent patients, using the microarray technique. Therefore, methods based on microarrays were developed for simultaneous detection of HSV-1, HSV-2, VZV, CMV, EBV, HHV-6A, HHV-6B, and HHV-7 nucleic acids, and for HSV-1, HSV-2, VZV, and CMV antibodies from various clinical samples. The microarray methods developed showed potential for efficiently and accurately detecting human herpesvirus DNAs, especially in CNS infections, and for simultaneous detection of DNAs or antibodies for multiple different human herpesviruses from clinical samples. In fact, the microarray method revealed several previously unrecognized co-infections. The microarray methods developed were sensitive and provided rapid detection of human herpesvirus DNA, and therefore the method could be applied to routine diagnostics. The microarrays might also be considered as an economical tool for diagnosing human herpesvirus infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During recent decades, thermal and radioactive discharges from nuclear power plants into the aquatic environment have become the subject of lively debate as an ecological concern. The target of this thesis was to summarize the large quantity of results obtained in extensive monitoring programmes and studies carried out in recipient sea areas off the Finnish nuclear power plants at Loviisa and Olkiluoto during more than four decades. The Loviisa NPP is located on the coast of the Gulf of Finland and Olkiluoto NPP on that of the Bothnian Sea. The state of the Gulf of Finland is clearly more eutrophic; the nutrient concentrations in the surface water are about 1½ 2 times higher at Loviisa than at Olkiluoto, and the total phosphorus concentrations still increased in both areas (even doubled at Loviisa) between the early 1970s and 2000. Thus, it is a challenge to distinguish the local effects of thermal discharges from the general eutrophication process of the Gulf of Finland. The salinity is generally low in the brackish-water conditions of the northern Baltic Sea, being however about 1 higher at Olkiluoto than at Loviisa (the salinity of surface water varying at the latter from near to 0 in early spring to 4 6 in late autumn). Thus, many marine and fresh-water organisms live in the Loviisa area close to their limit of existence, which makes the biota sensitive to any additional stress. The characteristics of the discharge areas of the two sites differ from each other in many respects: the discharge area at Loviisa is a semi-enclosed bay in the inner archipelago, where the exchange of water is limited, while the discharge area at Olkiluoto is more open, and the exchange of water with the open Bothnian Sea is more effective. The effects of the cooling water discharged from the power plants on the temperatures in the sea were most obvious in winter. The formation of a permanent ice cover in the discharge areas has been delayed in early winter, and the break-up of the ice occurs earlier in spring. The prolonging of the growing season and the disturbance of the overwintering time, in conditions where the biota has adjusted to a distinct rest period in winter, have been the most significant biological effects of the thermal pollution. The soft-bottom macrofauna at Loviisa has deteriorated to the point of almost total extinction at many sampling stations during the past 40 years. A similar decline has been reported for the whole eastern Gulf of Finland. However, the local eutrophication process seems to have contributed into the decline of the zoobenthos in the discharge area at Loviisa. Thermal discharges have increased the production of organic matter, which again has led to more organic bottom deposits. These have in turn increased the tendency of the isolated deeps to a depletion of oxygen, and this has further caused strong remobilization of phosphorus from the bottom sediments. Phytoplankton primary production and primary production capacity doubled in the whole area between the late 1960s and the late 1990s, but started to decrease a little at the beginning of this century. The focus of the production shifted from spring to mid- and late summer. The general rise in the level of primary production was mainly due to the increase in nutrient concentrations over the whole Gulf of Finland, but the thermal discharge contributed to a stronger increase of production in the discharge area compared to that in the intake area. The eutrophication of littoral vegetation in the discharge area has been the most obvious, unambiguous and significant biological effect of the heated water. Myriophyllum spicatum, Potamogeton perfoliatus and Potamogeton pectinatus, and vigorous growths of numerous filamentous algae as their epiphytes have strongly increased in the vicinity of the cooling water outlet, where they have formed dense populations in the littoral zone in late summer. However, the strongest increase of phytobenthos has extended only to a distance of about 1 km from the outlet, i.e., the changes in vegetation have been largest in those areas that remain ice-free in winter. Similar trends were also discernible at Olkiluoto, but to a clearly smaller extent, which was due to the definitely weaker level of background eutrophy and nutrient concentrations in the Bothnian Sea, and the differing local hydrographical and biological factors prevailing in the Olkiluoto area. The level of primary production has also increased at Olkiluoto, but has remained at a clearly lower level than at Loviisa. In spite of the analogous changes observed in the macrozoobenthos, the benthic fauna has remained strong and diversified in the Olkiluoto area. Small amounts of local discharge nuclides were regularly detected in environmental samples taken from the discharge areas: tritium in seawater samples, and activation products, such as 60Co, 58Co, 54Mn, 110mAg, 51Cr, in suspended particulate matter, bottom sediments and in several indicator organisms (e.g., periphyton and Fucus vesiculosus) that effectively accumulate radioactive substances from the medium. The tritium discharges and the consequent detection frequency and concentrations of tritium in seawater were higher at Loviisa, but the concentrations of the activation products were higher at Olkiluoto, where traces of local discharge nuclides were also observed over a clearly wider area, due to the better exchange of water than at Loviisa, where local discharge nuclides were only detected outside Hästholmsfjärden Bay quite rarely and in smaller amounts. At the farthest, an insignificant trace amount (0.2 Bq kg-1 d.w.) of 60Co originating from Olkiluoto was detected in Fucus at a distance of 137 km from the power plant. Discharge nuclides from the local nuclear power plants were almost exclusively detected at the lower trophic levels of the ecosystems. Traces of local discharge nuclides were very seldom detected in fish, and even then only in very low quantities. As a consequence of the reduced discharges, the concentrations of local discharge nuclides in the environment have decreased noticeably in recent years at both Loviisa and Olkiluoto. Although the concentrations in environmental samples, and above all, the discharge data, are presented as seemingly large numbers, the radiation doses caused by them to the population and to the biota are very low, practically insignificant. The effects of the thermal discharges have been more significant, at least to the wildlife in the discharge areas of the cooling water, although the area of impact has been relatively small. The results show that the nutrient level and the exchange of water in the discharge area of a nuclear power plant are of crucial importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of oxygen has a major effect on all organisms. The yeast Saccharomyces cerevisiae is able to adapt its metabolism for growth in different conditions of oxygen provision, and to grow even under complete lack of oxygen. Although the physiology of S. cerevisiae has mainly been studied under fully aerobic and anaerobic conditions, less is known of metabolism under oxygen-limited conditions and of the adaptation to changing conditions of oxygen provision. This study compared the physiology of S. cerevisiae in conditions of five levels of oxygen provision (0, 0.5, 1.0, 2.8 and 20.9% O2 in feed gas) by using measurements on metabolite, transcriptome and proteome levels. On the transcriptional level, the main differences were observed between the three level groups, 0, 0.5 2.8 and 20.9% O2 which led to fully fermentative, respiro-fermentative and fully respiratory modes of metabolism, respectively. However, proteome analysis suggested post-transcriptional regulation at the level of 0.5 O2. The analysis of metabolite and transcript levels of central carbon metabolism also suggested post-transcriptional regulation especially in glycolysis. Further, a global upregulation of genes related to respiratory pathways was observed in the oxygen-limited conditions and the same trend was seen in the proteome analysis and in the activities of enzymes of the TCA cycle. The responses of intracellular metabolites related to central carbon metabolism and transcriptional responses to change in oxygen availability were studied. As a response to sudden oxygen depletion, concentrations of the metabolites of central carbon metabolism responded faster than the corresponding levels of gene expression. In general, the genome-wide transcriptional responses to oxygen depletion were highly similar when two different initial conditions of oxygen provision (20.9 and 1.0% O2) were compared. The genes related to growth and cell proliferation were transiently downregulated whereas the genes related to protein degradation and phosphate uptake were transiently upregulated. In the cultures initially receiving 1.0% O2, a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, response to oxidative stress and pentose phosphate pathway was observed. Additionally, this work analysed the effect of oxygen on transcription of genes belonging to the hexose transporter gene family. Although the specific glucose uptake rate was highest in fully anaerobic conditions, none of the hxt genes showed highest expression in anaerobic conditions. However, the expression of genes encoding the moderately low affinity transporters decreased with the decreasing oxygen level. Thus it was concluded that there is a relative increase in high affinity transport in anaerobic conditions supporting the high uptake rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two types of antigen-presenting cells (APCs), macrophages and dendritic cells (DCs), function at the interface of innate and adaptive immunity. Through recognition of conserved microbial patterns, they are able to detect the invading pathogens. This leads to activation of signal transduction pathways that in turn induce gene expression of various molecules required for immune responses and eventually pathogen clearance. Cytokines are among the genes induced upon detection of microbes. They play an important role in regulating host immune responses during microbial infection. Chemotactic cytokines, chemokines, are involved in migratory events of immune cells. Cytokines also promote the differentiation of distinct T cell responses. Because of the multiple roles of cytokines in the immune system, the cytokine network needs to be tightly regulated. In this work, the induction of innate immune responses was studied using human primary macrophages or DCs as cell models. Salmonella enterica serovar Typhimurium served as a model for an intracellular bacterium, whereas Sendai virus was used in virus experiments. The starting point of this study was that DCs of mouse origin had recently been characterized as host cells for Salmonella. However, only little was known about the immune responses initiated in Salmonella-infected human DCs. Thus, cellular responses of macrophages and DCs, in particular the pattern of cytokine production, to Salmonella infection were compared. Salmonella-induced macrophages and DCs were found to produce multiple cytokines including interferon (IFN) -gamma, which is conventionally produced by T and natural killer (NK) cells. Both macrophages and DCs also promoted the intracellular survival of the bacterium. Phenotypic maturation of DCs as characterized by upregulation of costimulatory and human leukocyte antigen (HLA) molecules, and production of CCL19 chemokine, were also detected upon infection with Salmonella. Another focus of this PhD work was to unravel the regulatory events controlling the expression of cytokine genes encoding for CCL19 and type III IFNs, which are central to DC biology. We found that the promoters of CCL19 and type III IFNs contain similar regulatory elements that bind nuclear factor kappaB (NF-kappaB) and interferon regulatory factors (IRFs), which could mediate transcriptional activation of the genes. The regulation of type III IFNs in virus infection resembled that of type I IFNs a cytokine class traditionally regarded as antiviral. The induction of type I and type III IFNs was also observed in response to bacterial infection. Taken together, this work identifies new details about the interaction of Salmonella with its phagocytic host cells of human origin. In addition, studies provide information on the regulatory events controlling the expression of CCL19 and the most recently identified IFN family genes, type III IFN genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO2 and CH4). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH4 oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal peatland habitats. The results indicate that microbial community responses to WLD are complex but dependent on peatland type, litter quality, depth, and variable among microbes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity of life is based on an effective energy transduction machinery, which has evolved during the last 3.5 billion years. In aerobic life, the utilization of the high oxidizing potential of molecular oxygen powers this machinery. Oxygen is safely reduced by a membrane bound enzyme, cytochrome c oxidase (CcO), to produce an electrochemical proton gradient over the mitochondrial or bacterial membrane. This gradient is used for energy-requiring reactions such as synthesis of ATP by F0F1-ATPase and active transport. In this thesis, the molecular mechanism by which CcO couples the oxygen reduction chemistry to proton-pumping has been studied by theoretical computer simulations. By building both classical and quantum mechanical model systems based on the X-ray structure of CcO from Bos taurus, the dynamics and energetics of the system were studied in different intermediate states of the enzyme. As a result of this work, a mechanism was suggested by which CcO can prevent protons from leaking backwards in proton-pumping. The use and activation of two proton conducting channels were also enlightened together with a mechanism by which CcO sorts the chemical protons from pumped protons. The latter problem is referred to as the gating mechanism of CcO, and has remained a challenge in the bioenergetics field for more than three decades. Furthermore, a new method for deriving charge parameters for classical simulations of complex metalloenzymes was developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When organisms compete for mates and fertilisations, the process of sexual selection drives the evolution of traits that increase reproductive success. The traits targeted by selection, and the extent to which they change, are constrained by the local environment. Sexual selection due to female mate choice can be undermined by alternative reproductive tactics (ARTs), which refers to discontinuous variation in traits or behaviours used in reproduction. As human activities are rapidly changing our planet, this raises the question how ARTs will be affected. Fish show a bewildering diversity of ARTs, which make them good model organisms to answer these questions. One example of human-induced environmental change, which is affecting aquatic ecosystems around the world, is eutrophication, the over-enrichment of water bodies with nutrients. One of its effects is decreased underwater visibility due to increases in both turbidity and vegetation density. The aims of this thesis were to investigate the effects increased turbidity and vegetation density have on an ART in sticklebacks, a fish common to marine and fresh water bodies of the Northern hemisphere. I furthermore investigated how this affected sexual selection for male size, a trait commonly under selection. I used a combination of behavioural observations in microcosms, where I manipulated underwater visibility, with collection of genetic material to reconstruct parentage of broods, and thus identify sneak fertilisations. The results show that turbidity might have weak negative effects on the frequency of sneaking behaviour, although this behaviour was rather infrequent in these experiments, which complicates firm conclusions. In dense vegetation the number of sneak fertilisations decreased slightly, as fewer nesting males sneaked, while the number of non-nesting males sneaking remained constant. The paternity analyses revealed that a significantly smaller fraction of eggs was sneak fertilised under dense vegetation. Furthermore, amongst the nesting males that sneaked, the amount of eggs sneak fertilised correlated positively with courtship success. A reduction in sneaking by these males under dense vegetation equalised the distribution of fertilisation success, in turn contributing to a decrease in the opportunity for selection. Under dense vegetation significantly more males built nests, which has also been observed in previous field studies. In a separate experiment we addressed if such changes in the proportion of nesters and non-nesters, without changes in visibility, affected the incidence of sneak fertilisation. My results show this was not the case, likely because sneaking is an opportunistic tactic shown by both nesters and non-nesters. Non-nesters did sneak proportionately more when there were many of them, which could be due to changes in the cost-benefit ratio of sneaking. As nesters can only attack one intruder at a time, the costs and risks per sneaker will decrease as the number of sneakers increases. The defensive behaviours shown by the nesters before spawning shifted to a more aggressive form of nest defence. This could be because less aggressive behaviours lose their effectiveness when the number of intruders increases. It could also indicate that the risks associated with aggressive behaviours decrease when there are fewer fellow nesters, as other studies indicate nesters are competitive and aggressive individuals. Under turbid conditions I did not detect changes in the opportunity for selection, based on fertilisation success, nor was male size under significant selection under clear or turbid conditions. More thorough analyses under densely vegetated conditions across the nesting, courtship and fertilisation stages revealed a decrease in the opportunity for selection across all stages. A reduction in sneaking by nesters contributed to this. During the nesting stage, but not during later stages, body size was under significant directional selection under sparse, but not dense vegetation. This illustrates the importance of considering all selection stages to get a complete picture of how environmental changes affect sexual selection. Leaving out certain stages or subgroups can result in incomplete or misleading results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symmetry is a key principle in viral structures, especially the protein capsid shells. However, symmetry mismatches are very common, and often correlate with dynamic functionality of biological significance. The three-dimensional structures of two isometric viruses, bacteriophage phi8 and the archaeal virus SH1 were reconstructed using electron cryo-microscopy. Two image reconstruction methods were used: the classical icosahedral method yielded high resolution models for the symmetrical parts of the structures, and a novel asymmetric in-situ reconstruction method allowed us to resolve the symmetry mismatches at the vertices of the viruses. Evidence was found that the hexameric packaging enzyme at the vertices of phi8 does not rotate relative to the capsid. The large two-fold symmetric spikes of SH1 were found not to be responsible for infectivity. Both virus structures provided insight into the evolution of viruses. Comparison of the phi8 polymerase complex capsid with those of phi6 and other dsRNA viruses suggests that the quaternary structure in dsRNA bacteriophages differs from other dsRNA viruses. SH1 is unusual because there are two major types of capsomers building up the capsid, both of which seem to be composed mainly of single beta-barrels perpendicular to the capsid surface. This indicates that the beta-barrel may be ancestral to the double beta-barrel fold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human parvovirus B19 is a minute ssDNA virus causing a wide variety of diseases, including erythema infectiosum, arthropathy, anemias, and fetal death. After primary infection, genomic DNA of B19 has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. In this thesis, the viral DNA was shown to persist as an apparently intact molecule of full length, and without persistence-specific mutations. Thus, although the mere presence of B19 DNA in tissue can not be used as a diagnostic criterion, a possible role in the pathogenesis of diseases e.g. through mRNA or protein production can not be excluded. The molecular mechanism, the host-cell type and the possible clinical significance of B19 DNA tissue persistence are yet to be elucidated. In the beginning of this work, the B19 genomic sequence was considered highly conserved. However, new variants were found: V9 was detected in 1998 in France, in serum of a child with aplastic crisis. This variant differed from the prototypic B19 sequences by ~10 %. In 2002 we found, persisting in skin of constitutionally healthy humans, DNA of another novel B19 variant, LaLi. Genetically this variant differed from both the prototypic sequences and the variant V9 also by ~10%. Simultaneously, B19 isolates with DNA sequences similar to LaLi were introduced by two other groups, in the USA and France. Based on phylogeny, a classification scheme based on three genotypes (B19 types 1-3) was proposed. Although the B19 virus is mainly transmitted via the respiratory route, blood and plasma-derived products contaminated with high levels of B19 DNA have also been shown to be infectious. The European Pharmacopoeia stipulates that, in Europe, from the beginning of 2004, plasma pools for manufacture must contain less than 104 IU/ml of B19 DNA. Quantitative PCR screening is therefore a prerequisite for restriction of the B19 DNA load and obtaining of safe plasma products. Due to the DNA sequence variation among the three B19 genotypes, however, B19 PCR methods might fail to detect the new variants. We therefore examined the suitability of the two commercially available quantitative B19 PCR tests, LightCycler-Parvovirus B19 quantification kit (Roche Diagnostics) and RealArt Parvo B19 LC PCR (Artus), for detection, quantification and differentiation of the three B19 types known, including B19 types 2 and 3. The former method was highly sensitive for detection of the B19 prototype but was not suitable for detection of types 2 and 3. The latter method detected and differentiated all three B19 virus types. However, one of the two type-3 strains was detected at a lower sensitivity. Then, we assessed the prevalence of the three B19 virus types among Finnish blood donors, by screening pooled plasma samples derived from >140 000 blood-donor units: none of the pools contained detectable levels of B19 virus types 2 or 3. According to the results of other groups, B19 type 2 was absent also among Danish blood-donors, and extremely rare among symptomatic European patients. B19 type 3 has been encountered endemically in Ghana and (apparently) in Brazil, and sporadical cases have been detected in France and the UK. We next examined the biological characteristics of these virus types. The p6 promoter regions of virus types 1-3 were cloned in front of a reporter gene, the constructs were transfected into different cell lines, and the promoter activities were measured. As a result, we found that the activities of the three p6 promoters, although differing in sequence by >20%, were of equal strength, and most active in B19-permissive cells. Furthermore, the infectivity of the three B19 types was examined in two B19-permissive cell lines. RT-PCR revealed synthesis of spliced B19 mRNAs, and immunofluorescence verified the production of NS1 and VP proteins in the infected cells. These experiments suggested similar host-cell tropism and showed that the three virus types are strains of the same species, i.e. human parvovirus B19. Last but not least, the sera from subjects infected in the past either with B19 type 1 or type 2 (as evidenced by tissue persistence of the respective DNAs), revealed in VP1/2- and VP2-EIAs a 100 % cross-reactivity between virus types 1 and 2. These results, together with similar studies by others, indicate that the three B19 genotypes constitute a single serotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis is important in bacterial pathogenesis and colonization of animal and plant hosts. In this work I have investigated the functions of the bacterial outer membrane proteases, omptins, of Yersinia pestis and Salmonella enterica. Y. pestis is a zoonotic pathogen that causes plague and has evolved from gastroenteritis-causing Yersinia pseudotuberculosis about 13 000 years ago. S. enterica causes gastroenteritis and typhoid fever in humans. Omptins are transmembrane β-barrels with ten antiparallel β-strands and five surface-exposed loops. The loops are important in substrate recognition, and variation in the loop sequences leads to different substrate selectivities between omptins, which makes omptins an ideal platform to investigate functional adaptation and to alter their polypeptide substrate preferences. The omptins Pla of Y. pestis and PgtE of S. enterica are 75% identical in their amino acid sequences. Pla is a multifunctional protein with proteolytic and non-proteolytic functions, and it increases bacterial penetration and proliferation in the host. Functions of PgtE increase migration of S. enterica in vivo and bacterial survival in mouse macrophages, thus enhancing bacterial spread within the host. Mammalian plasminogen/fibrinolytic system maintains the balance between coagulation and fibrinolysis and participates in several cellular processes, e.g., cell migration and degradation of extracellular matrix proteins. This system consists of activation cascades, which are strictly controlled by several regulators, such as plasminogen activator inhibitor 1 (PAI-1), α2-antiplasmin (α2AP), and thrombin-activatable fibrinolysis inhibitor (TAFI). This work reveals novel interactions of the omptins of Y. pestis and S. enterica with the regulators of the plasminogen/fibrinolytic system: Pla and PgtE inactivate PAI-1 by cleavage at the reactive site peptide bond, and degrade TAFI, preventing its activation to TAFIa. Structure-function relationship studies with Pla showed that threonine 259 of Pla is crucial in plasminogen activation, as it prevents degradation of the plasmin catalytic domain by the omptin and thus maintains plasmin stability. In this work I constructed chimeric proteins between Pla and Epo of Erwinia pyrifoliae that share 78% sequence identity to find out which amino acids and regions in Pla are important for its functions. Epo is neither a plasminogen activator nor an invasin, but it degrades α2AP and PAI-1. Cumulative substitutions towards Pla sequence turned Epo into a Pla-like protein. In addition to threonine 259, loops 3 and 5 are critical in plasminogen activation by Pla. Turning Epo into an invasin required substitution of 31 residues located at the extracellular side of the Epo protein above the lipid bilayer, and also of the β1-strand in the N-terminal transmembrane region of the protein. These studies give an example of how omptins adapt to novel functions that advantage their host bacteria in different ecological niches.