960 resultados para wave power
Resumo:
Ultra-smooth nanocrystalline diamond (UNCD) films with high-acoustic wave velocity were introduced into ZnO-based surface acoustic wave (SAW) devices to enhance their microfluidic efficiency by reducing the acoustic energy dissipation into the silicon substrate and improving the acoustic properties of the SAW devices. Microfluidic efficiency of the ZnO-based SAW devices with and without UNCD inter layers was investigated and compared. Results showed that the pumping velocities increase with the input power and those of the ZnO/UNCD/Si devices are much larger than those of the ZnO/Si devices at the same power. The jetting efficiency of the droplet was improved by introducing the UNCD interlayer into the ZnO/Si SAW device. Improvement in the microfluidic efficiency is mainly attributed to the diamond layer, which restrains the acoustic wave to propagate in the top layer rather than dissipating into the substrate. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
We experimentally demonstrate two-photon Doppler free interactions on a chip-scale platform consisting of a silicon nitride waveguide integrated with rubidium vapor cladding. We obtain absorption lines having widths of 300 MHz, using low power levels. © OSA 2013.
Resumo:
An efficient fabrication scheme of buried ridge waveguide devices is demonstrated by UV-light imprinting technique using organic-in organic hybrid sol-gel Zr-doped SiO2 materials. The refractive indices of a guiding layer and a cladding layer for the buried ridge waveguide structure are 1.537 and 1.492 measured at 1550 nm, respectively. The tested results show more circular mode profiles clue to existence of the cladding layer. A buried ridge single-mode waveguide operating at 1550 nm has a low propagation loss (0.088 dB/cm) and the 1 x 2 MMI power splitter exhibits uniform outputs, with a very low splitting loss of 0.029 dB at 1549 nm.
A traveling-wave electroabsorption modulator with a large optical cavity and intrastep quantum wells
Resumo:
This paper reports a novel traveling-wave electroabsorption modulator (TWEAM) with a large optical cavity waveguide and an intrastep quantum well structure designed to achieve a high bandwidth, high saturation power and better fiber-matched optical profile, which is good for high coupling efficiency. The optical mode characteristic shows a great improvement in matching the circular mode of the fiber and the saturation power of 21 dBm, and a 3 dB bandwidth of 23 GHz was achieved for the fabricated TWEAM.
Resumo:
High-power and broadband quantum-dot (QD) superluminescent light-emitting diodes are realized by using a combination of self-assembled QDs with a high density, large inhomogeneous broadening, a tapered angled pump region, and etched V groove structure. This broad-area device exhibits greater than 70-nm 3-dB bandwidth and drive current insensitive emission spectra with 100-mW output power under continuous-wave operation. For pulsed operation, greater than 200-mW output power is obtained.
Resumo:
Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in semi-insulating (SI) 6H-SiC substrate by metal-organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Omega/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 pm x 2 nun demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 9 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
High-power operation of uncoated 22-mu m-wide quantum cascade lasers (QCLs) emitting at lambda approximate to 4.8 mu m is reported. The emitting region of the QCL structure consists of a 30-period strain-compensated In0.68Ga0.32As/In0.37Al0.63As superlattice. For a 4-mm-long laser in pulsed mode, a peak output power is achieved in excess of 2240mW per facet at 81K with a threshold current density of 0.64kA/cm(2). The effects of varying the cavity lengths from 1 to 4mm on the performances of the QCLs are analysed in detail and the low waveguide loss of only about 1.4 cm(-1) is extracted.
Resumo:
In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.
Resumo:
We present a comprehensive numerical study on the all-optical wavelength conversion based on the degenerate four-wave-mixing with continuous-wave pumping in the silicon nanowire waveguide. It is well known that the conversion efficiency and the 3-dB bandwidth can be greatly affected by the phase-matching condition. Through proper design of the waveguide cross-section, its dispersion property can be adjusted to satisfy the phase-matching condition and therefore effective wavelength conversion can be achieved in a large wavelength range. Generally, the group velocity dispersion plays a dominant role in the wavelength conversion. However, the fourth-order dispersion takes an important effect on the wavelength conversion when the group velocity dispersion is near the zero-point. Furthermore, the conversion efficiency and the 3-dB bandwidth can also be affected by the interactive length and the initial pump power. Through the numerical simulation, the optimal values for the interactive length and the initial pump power, which are functions of the propagation loss, are obtained to realize the maximum conversion efficiency. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We obtained continuous wave mode-locked Nd-GdVO4-KTP laser with a SESAM. This is the first report of CW mode-locked Nd GdVO4-KTP laser with a SESAM to our knowledge. 396mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM. (c) 2009 by Astro Ltd. Published exclusively by WLLEY-VCH Verlag GmbH & Co. KGaA
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are suitable to be a light source for photonic integrated circuits. InP-GaInAsP ETR lasers with side length from 10 to 30 pm and the output-waveguide width of 1 or 2 pm are fabricated using standard photolithography and inductively coupled-plasma etching techniques. Continuous-wave electrically injected 1520-nm ETR laser with 20-mu m sides is realized with the maximum output power 0.17 and 0.067 mW and the threshold current 34 and 43 mA at 290 K and 295 K, respectively.
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An add-drop filter based on a perfect square resonator can realize a maximum of only 25% power dropping because the confined modes are standing-wave modes. By means of mode coupling between two modes with inverse symmetry properties, a traveling-wave-like filtering response is obtained in a two-dimensional single square cavity filter with cut or circular corners by finite-difference time-domain simulation. The optimized deformation parameters for an add-drop filter can be accurately predicted as the overlapping point of the two coupling modes in an isolated deformed square cavity. More than 80% power dropping can be obtained in a deformed square cavity filter with a side length of 3.01 mu m. The free spectral region is decided by the mode spacing between modes, with the sum of the mode indices differing by 1. (c) 2007 Optical Society of America.