996 resultados para voltammetric determination
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A sensitive method based on square wave voltammetry is described for the quantitative determination of elemental sulfur, disulfide and mercaptan in gasoline using a mercury film electrode. These sulfur compounds can be quantified by direct dissolution of gasoline in a supporting electrolyte followed by subsequent voltammetric measurement. The supporting electrolyte is 1.4 mol L-1 sodium acetate and No acetic acid in methanol. Chemical and optimum operational conditions for the formation of the mercury film were analyzed in this study. The values obtained were a 4.3 mu m thickness for the mercury film, a 1000 rpm rotation frequency, -0.9 V applied potential and 600 s depositing time. Voltammetric measurements were obtained using square wave voltammetry with detection limits of the 3.0 x 10(-9), 1.6 x 10(-7) and 4.9 x 10(-7) mol L-1 for elemental sulfur, disulfide and mercaptan, respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A study of the voltammetric behaviour of the food colours brilliant blue FCF (C.I. 42090), erythrosine (C. I. 45430) and quinolin e yellow (C. I. 47005) in the pH range 2-10 have been carried out by cathodic stripping voltammetry. At pH 4.5 (acetate buffer) with an accumulation potential of 0 V and accumulation time of 30 s, the voltammograms presented well-defined reduction peaks at potential - 0.76 V for brilliant blue FCF, - 0.85 V for quinoline yellow and - 0.54 V for erythrosine. Linear calibration graphs were obtained from 8 to 80 mug l(-1) brilliant blue, from 4 to 43 mug l(-1) quinoline yellow and from 10 to 70 mug l(-1) erythrosine. The method has been successfully applied to identify and quantify binary mixtures of these dyes and applied for determining brilliant blue FCF in commercial food products.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
The Indanthrene Olive Green B (C.I. Vat Green 3; C.I. 69500), VG3 dye, a vat dye bearing an anthraquinonoid group and a ketonic group, can be detected by differential pulse voltammetry in alkaline solution using glassy carbon electrode. on the adsorbed form the dyes are reduced into three cathodic steps at -0.54 V, -0.65 V and -0.93 V vs Ag/AgCl. The leuco form generated after previous electrolysis at controlled potential of -1 V can be detected by voltammetry due to its reoxidation peak at -0.08 V. An analytical method is proposed for determining the vat dye using modified glassy carbon electrode by electrochemical activation in alkaline medium. Linear relationship was observed between l(Pu) vs concentration from I X 10(-5) mol L-1 to 6.0 X 10(-4) mol L-1. The detection limit was calculated to be 9.3 X 10(-6) mol L-1. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hydroxychloroquine (HCQ) is a halogenated aminoquinoline that presents wide biological activity, often being used as an antimalarial drug. The electrochemical reduction of HCQ was investigated by cyclic voltammetry and chronoamperometry using glassy carbon electrodes. By cyclic voltammetry, in acid medium, only the cathodic peak was observed. The electrochemical behavior of this peak is dependent on pH and the electrodic process occurs through an ErCi mechanism. The electron number (le) consumed in the reduction of HCQ was obtained by chronoamperometry. A method for the electrochemical determination of HCQ in pharmaceutical tablets was developed using differential pulse voltammetry. The detection limit reached was 11.2 mug ml(-1) of HCQ with a relative standard deviation of 0.46%. A spectrophotometric study of HCQ has been also carried out utilizing a band at 343 nm. The obtained detection limit and the relative standard deviation were 0.1 mug ml(-1) and 0.36%, respectively. The electrochemical methods are sufficiently accurate and precise to be applied for HCQ determination, in laboratorial routine, which can be used to determine the drug at low level. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The presence of trace basic organonitrogen compounds such as quinoline and pyridine in derivative petroleum fuels plays an important role in maintaining the engines of vehicles. However, these substances can contaminate the environment and so must be controlled because most of them are potentially carcinogenic and mutagenic. For these reasons, a reliable and sensitive method was developed for the determination of basic nitrogen compounds in fuel samples such as gasoline and diesel. This method utilizes preconcentration on an ion-exchange resin (Amberlyte IR - 120 H) followed by differential pulse voltammetry (DPV) on a glassy carbon electrode. The electrochemical behavior of quinoline and pyridine as studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion-controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for quinoline (-1.95 V) and pyridine (-2.52 V) vs. Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method displayed a good linear response from 0.10 to 300 mg L-1 and a limit of detection (LOD) of 5.05 and 0.25 mu g L-1 for quinoline and pyridine, respectively. Using the method of standard additions, the simultaneous determination of quinoline and pyridine in gasoline samples yielded 25.0 +/- 0.3 and 33.0 +/- 0.7 mg L-1 and in diesel samples yielded 80.3 +/- 0.2 and 131 +/- 0.4 mg L-1, respectively. Spike recoveries were 94.4 +/- 0.3% and 10 +/- 0.5% for quinoline and pyridine, respectively, in the fuel determinations. This proposed method was also compared with UV-vis spectrophotometric measurements. Results obtained for the two methods agreed well based on F and t student's tests.
Resumo:
This work presents an electroanalytical method based on square-wave voltammetry (SWV) for the determination of quinizarine (QNZ) in a mixture of Britton-Robinson buffer 0.08 mol L-1 with 30% of acetonitrile. The QNZ was oxidized at glassy carbon electrode in and the well-defined peak at +0.45 V vs. Ag/AgCl can be used for its determination as colour marker in fuel samples. All parameters were optimized and analytical curves can be constructed for QNZ concentrations ranging from 2.0 x 10(-6) mol L-1 to 1.4 x 10(-5) mol L-1, using f = 60 Hz and E-sw = 25 mV. The method offers a limit detection of 4.12 x 10(-7) mol L-1 and a standard deviation of 4.5% when six measurements of 1.25 x 10(-5) mol L-1 are compared. The method was successfully applied for determining QNZ in gasoline and diesel oil and the obtained results showed good agreement with those reported previously. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.