922 resultados para vapor coating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlxTi1-xN/CrN multilayer coatings were fabricated by magnetron sputtering and those hardness variations were studied by observing the crack propagation and measuring the chemical bonding state of nitrides by Ti addition. While AlN/CrN multilayer shown stair-like crack propagation, AlxTi1-xN/CrN multilayer illustrated straight crack propagation. Most interestingly, Ti addition induced more broken nitrogen bonds in the nitride multilayers, leading to the reduction of hardness. However, the hardness of Al0.25Ti0.75N/CrN multilayer, having high Ti contents, increased by the formation of many Ti-N bond again instead of Al-N bond. From these results, we found that linear crack propagation behavior was dominated by broken nitrogen bonds in the AlxT1-xN/CrN multilayer coatings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel and simple solution-based technique for depositing 2-D zinc oxide platelets at low temperature. Nanoplatelets that were mostly a-oriented associated with the Lotgering orientation factor of 0.65 were obtained by locating a glass substrate at a distance of about 5cm over the aqueous vapour of the boiling precursor. Experiments were carried out to optimize the coating parameters by placing the substrate at different positions, durations and the pH of the precursor. The X-ray diffraction studies confirmed the structure associated with the crystallites to be wurzite. The different morphology of the zinc oxide films and blue light emission were observed using scanning electron microscopy and fluorescence spectroscopy respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ternary alloy Ni-W-P and its WS2 nanocomposite coatings were successfully obtained on low-carbon steel using the electroless plating technique. The sodium tungstate (Na2WO4) concentration in the bath was varied to obtain Ni-W-P deposits containing various Ni and P contents. WS2 composite was obtained with a suitable concentration of Na2WO4 in Ni-P coating. These deposits were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX) studies. The corrosion behavior was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies in 3.5 wt % NaCl solutions, and the corrosion rates of the coatings for Ni-P, Ni-W-P, and Ni-W-P-WS2 were found to be 2.571 x 10(-5), 8.219 x 10(-7), and 7.986 x 10(-7) g/h, respectively. An increase in the codeposition of alloying metal tungsten (W) enhanced the corrosion resistance and microhardness and changed the structure and morphology of the deposits. Incorporation of WS2 nanoparticles to Ni-W-P alloy coating reduced the coefficient of friction from 0.16 to 0.11 and also helped in improving the corrosion resistance of the coating further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A steady state kinetic model has been developed for the vapor-liquid-solid growth of Si whiskers or nanowires from liquid catalyst droplets. The steady state is defined as one in which the net injection rate of Si into the droplet is equal to the ejection rate due to wire growth. Expressions that represent specific mechanisms of injection and ejection of Si atoms from the liquid catalyst droplet have been used and their relative importance has been discussed. The analysis shows that evaporation and reverse reaction rates need to be invoked, apart from just surface cracking of the precursor, in order to make the growth rate radius dependent. When these pathways can be neglected, the growth rate become radius independent and can be used to determine the activation energies for the rate limiting step of heterogeneous precursor decomposition. The ejection rates depend on the mechanism of wire growth at the liquid-solid interface or the liquid-solid-vapor triple phase boundary. It is shown that when wire growth is by nucleation and motion of ledges, a radius dependence of growth rate does not just come from the Gibbs-Thompson effect on supersaturation in the liquid, but also from the dependence of the actual area or length available for nucleation. Growth rates have been calculated using the framework of equations developed and compared with experimental results. The agreement in trends is found to be excellent. The same framework of equations has also been used to account for the diverse pressure and temperature dependence of growth rates reported in the literature. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the low temperature electrical and magnetic properties of polypyrrole (PPy)/multiwall carbon nanotube (MWNT) coaxial composite fibrils synthesized by the electro-polymerization method. The iron-filled MWNTs were first grown by chemical vapor deposition of a mixture of liquid phase organic compound and ferrocene by the one step method. Then the PPy/MWNT fibrils were prepared by the electrochemical polymerization process. Electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length. The temperature dependent electrical resistivity and magnetization measurements were done from room temperature down to 5 and 10 K, respectively. The room temperature resistivity (rho) of PPy/MWNT composite fibril sample is similar to 3.8 Omega m with resistivity ratio R-5 K/R-300 K] of similar to 300, and the analysis of rho(T) in terms of reduced activation energy shows that resistivity lies in the insulating regime below 40 K. The resistivity varies according to three dimensional variable range hopping mechanism at low temperature. The magnetization versus applied field (M-H loop) data up to a field of 20 kOe are presented, displaying ferromagnetic behavior at all temperatures with enhanced coercivities similar to 680 and 1870 Oe at room temperature and 10 K, respectively. The observation of enhanced coercivity is due to significant dipolar interaction among encapsulated iron nanoparticles, and their shape anisotropy contribution as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly (ethylene-co-methacrylic acid) (PEMA) and poly (vinyl alcohol-co-ethylene) (EVOH) were studied for encapsulating Schottky structured organic devices. A calcium degradation test was used to determine water vapor transmission rates and to determine the moisture barrier performance of neat and blend films. Moisture barrier analysis for the neat and blend compositions was discussed concerning the interactions in the blend, diffusivity of water molecules through the unit cell systems, and the occupiable free volumes available in the unit cells using molecular dynamics simulations. The experimental results of water vapor permeation were correlated with diffusion behavior predicted from molecular dynamics simulations results. The effectiveness of the blend as a suitable barrier material in increasing the lifetime of an encapsulated Schottky structured organic device was determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the ultrasonic strain sensing performance of large-area piezoceramic coating with Inter Digital Transducer (IDT) electrodes is studied. The piezoceramic coating is prepared using slurry coating technique and the piezoelectric phase is achieved by poling under DC field. To study the sensing performance of the piezoceramic coating with IDT electrodes for strain induced by the guided waves, the piezoceramic coating is fabricated on the surface of a beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end. Often a wider frequency band of operation is needed for the effective implementation of the sensors in the Structural Health Monitoring (SHM) of various structures, for different types of damages. A wider frequency band of operation is achieved in the present study by considering the variation in the number of IDT electrodes in the contribution of voltage for the induced dynamic strain. In the present work, the fabricated piezoceramic coatings with IDT electrodes have been characterized for dynamic strain sensing applications using guided wave technique at various different frequencies. Strain levels of the launched guided wave are varied by varying the magnitude of the input voltage sent to the actuator. Sensitivity variation with the variation in the strain levels of guided wave is studied for the combination of different number of IDT electrodes. Piezoelectric coefficient e(11) is determined at different frequencies and at different strain levels using the guided wave technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodization of aluminum alloys is a common surface treatment procedure employed for the protection against corrosion. A thin amorphous layer of alumina is formed on the surface of alloy, which seals the alloy surface from the surrounding. This alumina layer being harder than the base aluminum alloy can be useful as a tribological coating. But since this alumina layer is randomly formed with disordered voids and pores, predicting the mechanical properties is difficult. Specific anodizing conditions can be used to form highly ordered anodic nanoporous alumina films 1] on the aluminum alloy surface. These nanoporous alumina layer can be effectively used as a tribological coating, because of the highly ordered controllable geometry and the empty pores which can be used as reservoirs for lubricant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of explosives, especially trinitrotoluene (TNT), is of utmost importance due to its highly explosive nature and environmental hazard. Therefore, detection of TNT has been a matter of great concern to the scientific community worldwide. Herein, a new aggregation-induced phosphorescent emission (AIPE)-active iridium(III) bis(2-(2,4-difluorophenyl)pyridinato-NC2') (2-(2-pyridyl)benzimidazolato-N,N') complex FIrPyBiz] has been developed and serves as a molecular probe for the detection of TNT in the vapor phase, solid phase, and aqueous media. In addition, phosphorescent test strips have been constructed by impregnating Whatman filter paper with aggregates of FIrPyBiz for trace detection of TNT in contact mode, with detection limits in nanograms, by taking advantage of the excited state interaction of AIPE-active phosphorescent iridium(III) complex with that of TNT and the associated photophysical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the growth of carbon nanoflakes (CNFs) on Si substrate by the hot filament chemical vapor deposition without the substrate bias or the catalyst. CNFs were grown using the single wall carbon nanotubes and the multiwall carbon nanotubes as the nucleation center, in the Ar-rich CH4-H-2-Ar precursor gas mixture with 1% CH4, at the chamber pressure and the substrate temperature of 7.5 Ton and 840 degrees C, respectively. In the H-2-rich condition, CNF synthesis failed due to severe etch-removal of carbon nanotubes (CNTs) while it was successful at the optimized Ar-rich condition. Other forms of carbon such as nano-diamond or mesoporous carbon failed to serve as the nucleation centers for the CNF growth. We proposed a mechanism of the CNF synthesis from the CNTs, which involved the initial unzipping of CNTs by atomic hydrogen and subsequent nucleation and growth of CNFs from the unzipped portion of the graphene layers. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the electrical transport behavior of carbon nanotubes (CNTs) upon exposure to organic analytes (namely ethanol, benzene, acetone and toluene). The resulting nonlinear current-voltage characteristics revealed a power law dependence of the differential conductivity on the applied bias voltage. Moreover, suppression of differential conductivity at zero bias is found to be dependent on different selective analytes. The power law exponent values have been monitored before, during and after exposure to the chemicals, which revealed a reversible change in the number of electron conducting channels. Therefore, the reduction in the number of conductive paths can be attributed to the interaction of the chemical analyte on the CNT surfaces, which causes a decrease in the differential conductivity of the CNT sample. These results demonstrate chemical selectivity of CNTs due to varying electronic interaction with different chemical analytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of barrier materials for organic device encapsulation is of key interest for the commercialization of organic electronics. In this work, we have fabricated barrier films with ultralow water vapor permeabilities by reactive layer-by-layer approach. Using this technique, alternative layers of polyethylene imine and stearic acid were covalently bonded on a Surlyn film. The roughness, transparency and thickness of the films were determined by atomic force microscopy, UV-visible spectroscopy and scanning electron microscopy, respectively. Water vapor transmission rates through these films and the ability of these films to protect the organic photovoltaic devices was investigated. The films with covalently assembled bilayers exhibited lower water vapor transmission rates and maintained higher organic photovoltaic device efficiencies compared to the neat Surlyn film.