950 resultados para ultra short pulse


Relevância:

80.00% 80.00%

Publicador:

Resumo:

设计了组成为0.70TeO2-(0.20-x)ZnO-xGeO2—0.05La2O3-0.025K2O-0.025Na2O-0.01Yb2O3(摩尔分数x=0,0.05,0.10,0.15和0.20)的碲酸盐激光玻璃,测试了热学性质、吸收光谱、荧光光谱和荧光寿命。计算了Yb^3+离子的吸收截面、受激发射截面、荧光有效线宽等参数。结果表明,组成为0.70TeO2-0.20GeO2-0.05La2O3-0.025K2O-0.025Na2O的玻璃具有优于著名的碲锌钠(TZN)玻璃的热稳定性,高的受激发射截面(1

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究了摩尔组分为70TeO2-(20-x)ZnO-xPbO-5La2O3-2.5K2O-2.5Na2O(x=0,5,10,15,20)的新型多元铅锌镧碲酸盐激光玻璃,外掺Yb2O3为玻璃摩尔组分的1%,测试了试样的物理性质及吸收光谱、荧光光谱和荧光寿命,计算了Yb^3+的吸收截面、受激发射截面、荧光有效线宽等光谱参数,结果表明:该系列玻璃都具有良好的热学稳定性((Tx-Tg)>195℃,高于TZN玻璃(118℃));当X=15时,样品具有较好的光谱性质:高的受激发射截面(1.25pm^2)、长的荧光寿命(

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研制成功便携式激光尘埃粒子计数器的核心部件——微型光学传感器。该传感器采用直角散射光收集形式。以高功率半导体激光器作为光源,同时采用高性能的PIN型光电二极管作为光电探测器。散射光收集系统为单一大数值孔径的球面反射镜,其对粒子散射光的收集角范围从20°到160°。粒子散射光信号是脉冲信号,其频谱成份主要在高频段,所以在PIN型光电二极管后用一个带通式前置放大器来消除外界的低频噪声.根据米氏散射理论计算了该光学传感器的光散射响应特性,并用聚苯乙烯标准粒子实测了该光学传感器的性能。结果表明,该系统具有高的信噪

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of Na+ doping level on the thermal conductivities, absorption and emission spectra, and fluorescence lifetimes of Yb3+ ,Na+ :CaF2 crystals were systematically studied. Sites structure, covalent force, and crystal field strength of Yb3+ :CaF2 crystals were markedly varied by codoping Na+ as charge compensator. The 2.0at% Yb3+ and 3.0at% Na+-codoped CaF2 crystal was demonstrated to operate in diode-pumped passively mode-locking scheme. Transform-limited 1 ps laser pulses were obtained, showing the crystal capable of producing ultra-short laser pulses. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

激光诱导薄膜损伤过程中,雪崩离化(AI)和多光子离化(MPI)的性质和作用到目前仍然存在争议。基于STUART等人的电子密度演化方程,运用数值模拟方法,研究了脉宽为τ∈[0.01,5]ps范围内单脉冲激光作用下熔融石英薄膜中电子密度演化过程;讨论了初始电子密度、激光脉冲宽度对阈值功率密度和阈值能量的影响;分析了初始电子密度、激光脉冲宽度对多光子离化及雪崩离化的影响。研究结果表明,在所研究的脉宽范围内,对于熔融石英光学薄膜、飞秒激光诱导损伤以雪崩离化为主导,多光子离化的影响随着脉宽的降低而增强,雪崩离化所需种子电子主要来源于多光子离化。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study of the design issues relevant to long-wavelength monolithic mode-locked lasers is presented. Following a detailed review of the field, we have devised a validated travelling wave model to explore the limits of mode-locking in monolithic laser diodes, not only in terms of pulse duration and repetition rate, but also in terms of stability. It is shown that fast absorber recovery is crucial for short pulse width, that the ratio of gain to absorption saturation is key in accessing ultrashort pulses and that low alpha factors give only modest benefit. Finally, optimized contact layouts are shown to greatly enhance pulse stability and the overall operational success. The design rules show high levels of consistency with published experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the past decades mode-locked fibre lasers have been extensively refined and developed, with most research efforts focussing on employing rare-earth doped fibres as the active elements [1]. This presents the problem that operation is limited to regions of the spectrum where such elements exhibit gain [1]. Raman amplification in silica fibre is an attractive way to overcome this spectral limitation, with gain available across the entire transparency window (300 nm - 2300 nm) [2-4]. There have been a number of reports utilising Raman gain in ultrashort pulse sources [2-4], however none using a broadband saturable absorber, such as carbon nanotubes [5-7] and graphene [7-9]. A broadband saturable absorber is an essential pre-requisite in order to fully exploit the wavelength flexibility provided by the Raman gain in short pulse mode-locked fiber lasers. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study on the nanosecond fiber laser interaction with silicon was performed experimentally for the generation of percussion drilled holes. Single pulse ablation experiments were carried out on mono crystalline 650μm thick Si wafers. Changes of the mass removal mechanism were investigated by varying laser fluence up to 68 J/cm2 and pulse duration from 50 ns to 200 ns. Hole width and depth were measured and surface morphology were studied using scanning electron microscopy (SEM) and optical interferometric profilometry (Veeco NT3300). High speed photography was also used to examine laser generated plasma expansion rates. The material removal rate was found to be influenced by the pulse energy, full pulse duration and pulse peak power. Single pulse ablation depth of 4.42 μm was achieved using a 200 ns pulse of 13.3 J/cm 2, giving a maximum machining efficiency of 31.86 μm per mJ. Holes drilled with an increased fluence but fixed pulse length were deeper, exhibited low recast, but were less efficient than those produced at a lower fluence. The increased peak power in this case led to high levels of plasma and vapour production. The expansion of which, results in a strong driving recoil force, an increase in the rate and volume of melt ejection, and cleaner hole formation. The experimental findings show that for efficient drilling at a given energy, a longer, lower peak power pulse is more desirable than a high peak power short pulse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report an erbium-doped, nanotube mode-locked fiber oscillator generating 74 fs pulses with 63 nm spectral width. This all-fiber-based laser is a simple, low-cost source for time-resolved optical spectroscopy, as well as for many applications where high resolution driven by short pulse durations is required. © 2012 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GaNAs/GaAs single quantum wells (SQWs) and dilute GaNAs bulk grown by molecular beam epitaxy(MBE) were studied by photoluminescence (PL), selectively-excited PL, and time-resolved PL. Exciton localization and delocalization were investigated in detail. Under short pulse laser excitation, the delocalization exciton emission was revealed in GaNAs/GaAs SQWs. It exhibits quite different optical properties from N-related localized states. In dilute GaNAs bulk, a transition of alloy band related recombination was observed by measuring the PL dependence on temperature and excitation intensity and time-resolved PL, as well. This alloy-related transition presents intrinsic optical properties. These results are very important for realizing the abnomal features of III-V-N semiconductors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gain recoveries in quantum dot semiconductor optical amplifiers are numerically studied by rate equation models. Similar to the optical pump-probe experiment, the injection of double optical pulses is used to simulate the gain recovery of a weak continuous signal for the QD SOAs. The gain recoveries are fitted by a response function with multiple exponential terms. For the pulses duration of 10 ps, the gain recovery can be described by three exponential terms with the time constants, and for the pulse with the width of 150 fs, the gain recovery can be described by two exponential terms, the reason is that the short pulse does not consume lot of carriers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High efficiency, TEM00 mode, high repetition rate laser pumped by 887 nm is reported. 20.1 W output laser emitting at 1064 nm is achieved in a 0.3 at % Nd-doped Nd:YVO4, which absorbs pumping light of 30.7 W at 887 nm. The opto-optic efficiency and the slope efficiency are 65.5 and 88.5%, respectively. The stable Q-switching operation worked well at 100 kHz and the beam quality is near diffraction-limit with M-2 factor measured as M-2 approximate to 1.2. And the pulse waveform is analyzed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under short pulse laser excitation, it has been observed, for the first time, a new high-energy photoluminescence emission from GaNx As1- x/GaAs SQWs. This new emission has totally different optical properties compared with the localized exciton transition in GaNx As1-x, and is attributed to the recombination of delocalized excitons in QWs. At the same time, a competition process between localized and delocalized exciton emissions in GaNx As1-x/GaAs quantum wells is observed in the temperaturedependent PL spectra under the short pulse excitation. This competition process for the first time, reveals the physical origin of the temperature-induced S-shaped PL peak shift, which was often reported in the disordered alloy semiconductor system under continuous-wave excitation and puzzled people for a long time. We have also investigated a set of GaNx As1- x samples with small nitrogen composition( x < 1% )by PL, and time-resolved PL. After the PL dependence on temperature and excitation power and PL dynamics were measured, the new PL peak was identified as an intrinsic transition of alloy, rather than N-related bound states. This is the first observation in PL, showing that alloy state exists in GaNx As1- x materials even when N composition is smaller than 0.1%. Finally by selective excitation,both type-Ⅰ and type-Ⅱ transitions were observed simultaneously in GaAs1-xSbx/GaAs SQWs for the first time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied exciton localization and delocalization effect in GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy (MBE) using photoluminescence (PL) and timeresolved PL measurements. Studied results suggest that, at low temperature and under a conventional CW excitation, measured PL spectra were dominated by localized exciton (LE) emission caused by potential fluctuations in GaNAs layer. However, under short pulse laser excitation, it is different. An extra high-energy PL peak comes out from GaNAs/GaAs QWs and dominates the PL spectra under high excitation and/or at high temperature. By investigation, we have attributed the new PL peak to the recombination of delocalized excitons in QWs. This recombination process competes with the localized exciton emission, which, we believe, constitutes the "S-shaped" temperature-dependent emission shift often reported in ternary nitrides of InGaN and AlGaN in the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Taking advantages of short pulse excitation and time-resolved photoluminescence (PL), we have studied the exciton localization effect in a number of GaAsN alloys and GaAsN/GaAs quantum wells (QWs). In the PL spectra, an extra transition located at the higher energy side of the commonly reported N-related emissions is observed. By measuring PL dependence on temperature and excitation power along with PL dynamics study, the new PL peak has been identified as a transition of the band edge-related recombination in dilute GaAsN alloy and delocalized transition in QWs. Using selective excitation PL we further attribute the localized emission in QWs to the excitons localized at the GaAsN/GaAs interfaces. This interface-related exciton localization could be greatly reduced by a rapid thermal annealing.