918 resultados para two-point selection
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Genetic gains predicted for selection, based on both individual performance and progeny testing, were compared to provide information to be used in implementation of progeny testing for a Nelore cattle breeding program. The prediction of genetic gain based on progeny testing was obtained from a formula, derived from methodology of Young and weller (J. Genetics 57: 329-338, 1960) for two-stage selection, which allows prediction of genetic gain per generation when the individuals under test have been pre-selected on the basis of their own performance. The application of this formula also allowed determination of the number of progeny per tested bull needed to maximize genetic gain, when the total number of tested progeny is limited.
Resumo:
In this work the problem of a spacecraft bi-impulsive transfer between two given non coplanar elliptical orbits, with minimum fuel consumption, is solved considering a non-Keplerian force field (the perturbing forces include Earth gravity harmonics and atmospheric drag). The problem is transformed in the Two Point Boundary Value Problem. It is developed and implemented a new algorithm, that uses the analytical expressions developed here. A dynamics that considered a Keplerian force field was used to produce an initial guess to solve the Two Point Boundary Value Problem. Several simulations were performed to observe the spacecraft orbital behaviour by different kind of perturbations and constraints, on a fuel consumption optimization point of view. (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work describes the influence of the ion bombardment on the electrical, optical and mechanical properties of polymer films deposited from radio-frequency plasmas of benzene. Irradiations were conducted using N+ at 5 x 10(19) ions/m(2), varying the ion energy, E-0, from 0 to 150 keV. Film elemental composition was determined by Rutherford backscattering spectroscopy. Electrical resistivity and hardness were obtained by the two-point probe and nanoindentation technique, respectively. Ultraviolet-visible spectroscopy was employed to investigate the optical constants of the samples. Etching rate was determined by exposure of the films to reactive oxygen plasmas. Ion bombardment induced gradual loss of H and increase in C and O concentrations with Eo. As a consequence the electrical, optical and mechanical properties were drastically affected. Interpretation of these results is proposed in terms of chain cross-linking and unsaturation. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Genetic gains predicted for selection, based on both individual performance and progeny testing, were compared to provide information to be used in implementation of progeny testing for a Nelore cattle breeding program. The prediction of genetic gain based on progeny testing was obtained from a formula, derived from methodology of Young and Weiler (J. Genetics 57: 329-338, 1960) for two-stage selection, which allows prediction of genetic gain per generation when the individuals under test have been pre-selected on the basis of their own performance. The application of this formula also allowed determination of the number of progeny per tested bull needed to maximize genetic gain, when the total number of tested progeny is limited.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
The spatial dynamics of three blowfly species was investigated using a spatially extended model of density-dependent population growth and the results indicate an overall stabilizing effect. Introduction of diffusive dispersal induced a quantitative effect of damping variation in population size on the route to a one-fixed point equilibrium in the native species, Cochliomyia macellaria. On the other hand, diffusive dispersal caused qualitative shifts in the dynamics of two invading species, Chrysomya megacephala and Chrysomya putoria. In both species diffusive dispersal can produce a qualitative shift from a two-point limit cycle to a one fixed-point dynamics. Quantitatively, dispersal also has the effect of damping oscillations in population size in the invading species.
Resumo:
In this work we consider the two-point Green's functions in (1 + 1)-dimensional quantum electrodynamics and show that the correct implementation of analytic regularization gives a gauge invariant result for the vacuum polarization amplitude and the correct coefficient for the axial anomaly.
Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation
Resumo:
In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.
Resumo:
We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described by large-scale vacuum field fluctuations. This solution decays exponentially at large distances. It is stable only if the interaction of the instanton with the background vacuum field is small and additional constraints are introduced. The CI solution is explicitly constructed in the ansatz form, and the two-point vacuum correlator of the gluon field strengths is calculated in the framework of the effective instanton vacuum model. At small distances the results are qualitatively similar to the single instanton case; in particular, the D1 invariant structure is small, which is in agreement with the lattice calculations.
Resumo:
We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions. with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality for non-renormalizable theories.
Resumo:
We apply the negative dimensional integration method (NDIM) to three outstanding gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that NDIM is a very suitable technique to deal with loop integrals, regardless of which gauge choice that originated them. In the Feynman gauge we perform scalar two-loop four-point massless integrals; in the light-cone gauge we calculate scalar two-loop integrals contributing to two-point functions without any kind of prescriptions, since NDIM can abandon such devices - this calculation is the first test of our prescriptionless method beyond one-loop order; and finally, for the Coulomb gauge we consider a four-propagator massless loop integral, in the split-dimensional regularization context. © 2001 Academic Press.
Resumo:
Includes bibliography